【題目】①如圖,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度數(shù).
②先化簡再求值:化簡:,x=2020.
【答案】①∠DEC=58°;②.
【解析】
(1)先根據(jù)∠A=55°,∠ACB=70°得出∠ABC的度數(shù),再由∠ABD=32°得出∠CBD的度數(shù),根據(jù)CE平分∠ACB得出∠BCE的度數(shù),最后用三角形的外角即可得出結(jié)論.
(2)先把括號內(nèi)通分,再把除法轉(zhuǎn)化為乘法,并把分子分母約分化簡,然后把x=2020代入化簡的結(jié)果計算即可.
①解:在△ABC中,
∵∠A=55°,∠ACB=70°
∴∠ABC=55°
∵∠ABD=32°,
∴∠CBD=∠ABC﹣∠ABD=23°
∵CE平分∠ACB,∴∠BCE=∠ACB=35°,
∴在△BCE中,∠DEC=∠CBD+BCE=58°.
②解:原式=
=
=
當(dāng)x=2020時,=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:已知實(shí)數(shù)m,n滿足(2m2+n2+1)(2m2+n2﹣1)=80,試求2m2+n2的值
解:設(shè)2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±9因?yàn)?/span>2m2+n2≥0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
已知實(shí)數(shù)x,y滿足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,明明和強(qiáng)強(qiáng)相約到距他們村莊560米的博物館游玩,他們同時從村莊出發(fā)去博物館,明明到博物館后因家中有事立即返回.如圖是他們離村莊的距離y(米)與步行時間x(分鐘)之間的函數(shù)圖象,若他們出發(fā)后6分鐘相遇,則相遇時強(qiáng)強(qiáng)的速度是_____米/分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)第五次、第六次全國人口普查結(jié)果顯示:某市常住人口總數(shù)由第五次的400萬人增加到第六次的450萬人,常住人口的學(xué)歷狀況統(tǒng)計圖如圖所示(部分信息未給出):
解答下列問題:
(1)求第六次人口普查小學(xué)學(xué)歷的人數(shù),并把條形統(tǒng)計圖補(bǔ)充完整;
(2)求第五次人口普查中該市常住人口每萬人中具有初中學(xué)歷的人數(shù);
(3)第六次人口普查結(jié)果與第五次相比,每萬人中初中學(xué)歷的人數(shù)增加了多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC與△DEC是兩個大小不同的等腰直角三角形.
(1)如圖①所示,連接AE,DB,試判斷線段AE和DB的數(shù)量和位置關(guān)系,并說明理由;
(2)如圖②所示,連接DB,將線段DB繞D點(diǎn)順時針旋轉(zhuǎn)90°到DF,連接AF,試判斷線段DE和AF的數(shù)量和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司經(jīng)營楊梅業(yè)務(wù),以3萬元/噸的價格買入楊梅后,分揀成A、B兩類,A類楊梅包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(萬元/噸)與銷售數(shù)量x(x≥2,單位:噸)之間的函數(shù)關(guān)系如圖;B類楊梅深加工后再銷售,深加工總費(fèi)用s(萬元)與加工數(shù)量t(噸)之間的函數(shù)關(guān)系是s=12+3t,平均銷售價格為9萬元/噸.
(1)A類楊梅的銷售量為5噸時,它的平均銷售價格是每噸多少萬元?
(2)若該公司收購10噸楊梅,其中A類楊梅有4噸,則經(jīng)營這批楊梅所獲得的毛利潤(w)為多少萬元?(毛利潤=銷售總收入﹣經(jīng)營總成本)
(3)若該公司收購20噸楊梅,要使該公司獲得30萬元毛利潤,求直銷的A類楊梅有多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.
(1)求∠AOD的度數(shù);
(2)若射線OB繞點(diǎn)O以每秒旋轉(zhuǎn)20°的速度順時針旋轉(zhuǎn),同時射線OC以每秒旋轉(zhuǎn)15°的速度逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時間為t秒(0<t<6),試求當(dāng)∠BOC=20°時t的值;
(3)若∠AOB繞點(diǎn)O以每秒旋轉(zhuǎn)5°的速度逆時針旋轉(zhuǎn),同時∠COD繞點(diǎn)O以每秒旋轉(zhuǎn)10°的速度逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時間為t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋轉(zhuǎn)的過程中,∠MON的度數(shù)是否發(fā)生改變?若不變,求出其值:若改變,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12cm,BC=10cm,點(diǎn)D為AB的中點(diǎn),如果點(diǎn)P在線段BC上以2cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,同時,點(diǎn)Q在線段AC上由點(diǎn)A向點(diǎn)C 以4cm/s的速度運(yùn)動.若點(diǎn)P、Q兩點(diǎn)分別從點(diǎn)B、A同時出發(fā).
(1)經(jīng)過2秒后,求證:∠DPQ=∠C.
(2)若△CPQ的周長為18cm,問經(jīng)過幾秒鐘后,△CPQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為反比例函數(shù)y=(k>0)在第一象限內(nèi)圖象上的一點(diǎn),過點(diǎn)P分別作x軸,y軸的垂線交一次函數(shù)y=﹣x﹣4的圖象于點(diǎn)A、B.若∠AOB=135°,則k的值是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com