在下列每個(gè)二元一次方程組的后面都給出了x、y的一對(duì)值,試判斷這對(duì)數(shù)值是不是它前面方程組的解:
(1)
3x+4y=2
2x-y=5
x=2
y=-1
);(2)
x+5y=6
3x-6y=-1
x=1
y=1
);(3)
5x+2y=15
8x+3y=-1
x=-47
y=-125
);(4)
x
4
+
y
3
1
3
5(x-9)=6(y-2)
x=0
y=3
).
分析:把每組x,y的值,分別代入方程組的兩個(gè)方程,如果能使兩個(gè)方程同時(shí)成立,就是方程組的解,反之就不是方程組的解.
解答:解:把每個(gè)二元一次方程組的后面給出的x、y的一對(duì)值,分別代入原方程組檢驗(yàn)可知,
(1)是前面方程組的解,(2)不是前面方程組的解,(3)是前面方程組的解,(4)不是前面方程組的解.
點(diǎn)評(píng):所謂“方程組”的解,指的是該數(shù)值滿足方程組中的每一方程的值,只需將未知數(shù)的值代入方程組檢驗(yàn)即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在下列三個(gè)二元一次方程中,請(qǐng)你選擇合適的兩個(gè)方程組成二元一次方程組,然后求出方程組的解.
可供選擇的方程:①y=2x-3  ②2x+y=5  ③4x-y=7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在下列各對(duì)數(shù)中,是二元一次方程組
2x+3y=6
2x+y=6
的解是( 。
A、
x=0
y=2
B、
x=0
y=6
C、
x=
1
4
y=
11
2
D、
x=3
y=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個(gè),而在實(shí)際問題中我們往往只需要求出其正整數(shù)解.下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x
∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x為正整數(shù),則
2
3
x為正整數(shù),所以x為3的倍數(shù).
又因?yàn)?<x<6,從而x=3,代入:y=4-
2
3
×3=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

解決問題:
(1)九年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,花費(fèi)35元購買了筆記本和鋼筆兩種獎(jiǎng)品,其中筆記本的單價(jià)為3元/本,鋼筆單價(jià)為5元/支,問有幾種購買方案?
(2)試求方程組
2x+y+z=10
3x+y-z=12
的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個(gè),而在實(shí)際問題中我們往往只需要求出其正整數(shù)解.
下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x
為正整數(shù),則
2
3
x
為正整數(shù),所以x為3的倍數(shù)
又因?yàn)?<x<6,從而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

問題:(1)若 
6
x-2
為正整數(shù),則滿足條件的x的值有幾個(gè).( 。
A、2    B、3    C、4   D、5
      (2)九年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,花費(fèi)35元購買了筆記本和鋼筆兩種獎(jiǎng)品,其中筆記本的單價(jià)為3元/本,鋼筆單價(jià)為5元/支,問有幾種購買方案?
      (3)試求方程組
2x+y+z=10
3x+y-z=12
 的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)在下列三個(gè)二元一次方程中,請(qǐng)你選擇合適的兩個(gè)方程組成二元一次方程組,然后求出方程組的解. 
可供選擇的方程:①y=2x-3  ②2x+y=5  ③4x-y=7.
(2)解方程組 
3(x-1)=y+5
5(y-1)=3(x+5)

(3)已知x、y滿足
2x+y
2
=
5x+2y
4
=1
,求代數(shù)式
3x+2y+3
2x-3y+7
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案