【題目】在△ABC中,AB=BC,以AB為直徑的⊙O與AC交于點(diǎn)D,過(guò)點(diǎn)D作DF⊥BC,交AB的延長(zhǎng)線于E,垂足為F.
(1)如圖①,求證直線DE是⊙O的切線;
(2)如圖②,作DG⊥AB于H,交⊙O于G,若AB=5,AC=8,求DG的長(zhǎng).

【答案】
(1)證明:連接OD,如圖,

∵AB=BC,

∴∠A=∠C.

∵OA=OD,

∴∠A=∠ADO.

∴∠C=∠ADO.

∴OD∥BC.

∵DF⊥BC,

∴∠ODE=90°.

∴直線DE是⊙O的切線;


(2)解:連接DB,

∵AB是⊙O的直徑,

∴∠ADB=90°.

∵AB=BC,

∴AD=DC.

∵AC=8,

∴AD=4.

在Rt△ADB中,BD= = =3,

∵DG⊥AB于H,

由三角形面積公式,得ABDH=ADDB.

∴DH= = ,

∵AB⊥DG,

∴DG=2DH=


【解析】(Ⅰ)連接OD,由AB=BC,OA=OD,得到∠A=∠C,∠A=∠ADO,則∠C=∠ADO,得到OD∥BC;而DF⊥BC,則∠ODE=90°,根據(jù)切線的判定定理即可得到結(jié)論;(Ⅱ)連接BD,AB是⊙O的直徑,根據(jù)圓周角定理的推論得到∠ADB=90°.而AB=BC,則AD=DC=4.在Rt△ADB中,利用勾股定理可計(jì)算出BD=3,再利用等積法得到ABDH=ADDB,可計(jì)算出DH,然后根據(jù)垂徑定理得到DG=2DH.
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和圓周角定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的2018年元月份的月歷表中,任意框出表中豎列上四個(gè)數(shù),這四個(gè)數(shù)的和可能是(  )

A. 86 B. 78 C. 60 D. 101

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,EOC上動(dòng)點(diǎn)(與點(diǎn)O不重合),作AF⊥BE,垂足為G,交BOH.連接OG、CG.

(1)求證:AH=BE;

(2)試探究:∠AGO 的度數(shù)是否為定值?請(qǐng)說(shuō)明理由;

(3)OG⊥CG,BG=,求△OGC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》勾股章的問(wèn)題::今有二人同所立,甲行率七,乙行率三,乙東行,甲南行十步而斜東北與乙會(huì).問(wèn)甲、乙各行幾何?大意是說(shuō):如圖,甲乙二人從A處同時(shí)出發(fā),甲的速度與乙的速度之比為7:3,乙一直向東走,甲先向南走十步到達(dá)C處,后沿北偏東某方向走了一段距離后與乙在B處相遇,這時(shí),甲乙各走了多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示﹣10,點(diǎn)B表示11,點(diǎn)C表示18.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿?cái)?shù)軸負(fù)方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇?相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少?

(2)在點(diǎn)Q出發(fā)后到達(dá)點(diǎn)B之前,求t為何值時(shí),點(diǎn)P到點(diǎn)O的距離與點(diǎn)Q到點(diǎn)B的距離相等;

(3)在點(diǎn)P向右運(yùn)動(dòng)的過(guò)程中,NAP的中點(diǎn),在點(diǎn)P到達(dá)點(diǎn)C之前,求2CN﹣PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD=2AB,E、F、G、H分別是AB,BC,CD,AD邊上的點(diǎn),EG⊥FH,F(xiàn)H=2 ,則四邊形EFGH的面積為(
A.8
B.8
C.12
D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件工程甲獨(dú)做50天可完,乙獨(dú)做75天可完,現(xiàn)在兩個(gè)人合作,但是中途乙因事離開(kāi)幾天,從開(kāi)工后40天把這件工程做完,則乙中途離開(kāi)了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).

(1)求線段MN的長(zhǎng)度;

(2)根據(jù)第(1)題的計(jì)算過(guò)程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長(zhǎng)度;

(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí),C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某批彩色彈力球的質(zhì)量檢驗(yàn)結(jié)果如下表:

抽取的彩色彈力球數(shù)n

500

1000

1500

2000

2500

優(yōu)等品頻數(shù)m

471

946

1426

1898

2370

優(yōu)等品頻率

0.942

0.946

0.951

0.949

0.948

(1)請(qǐng)?jiān)趫D中完成這批彩色彈力球優(yōu)等品頻率的折線統(tǒng)計(jì)圖

(2)這批彩色彈力球優(yōu)等品概率的估計(jì)值大約是多少?(精確到0.01)

(3)從這批彩色彈力球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除了顏色外都相同,將它們放入一個(gè)不透明的袋子中,求從袋子中摸出一個(gè)球是黃球的概率.

(4)現(xiàn)從第(3)問(wèn)所說(shuō)的袋子中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻,使從袋子中摸出一個(gè)黃球的概率為,求取出了多少個(gè)黑球?

查看答案和解析>>

同步練習(xí)冊(cè)答案