【題目】已知:如圖△ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網(wǎng)格中畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標.

【答案】
(1)

解:如圖所示:△A1B1C1,即為所求


(2)

解:如圖所示:△A2B2C2,即為所求,A2坐標(﹣2,﹣2).


【解析】(1)直接利用平移的性質(zhì)得出對應(yīng)點位置進而得出答案;(2)利用位似圖形的性質(zhì)得出對應(yīng)點位置進而得出.此題主要考查了位似變換和平移變換,根據(jù)題意正確得出對應(yīng)點位置是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡: ①金卡售價600元/張,每次憑卡不再收費.
②銀卡售價150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時,所需總費用為y元
(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標系中,若三種消費方式對應(yīng)的函數(shù)圖象如圖所示,請求出點A、B、C的坐標;
(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】倡導(dǎo)健康生活,推進全民健身,某社區(qū)要購進A,B兩種型號的健身器材若干套,A,B兩種型號健身器材的購買單價分別為每套310元,460元,且每種型號健身器材必須整套購買.
(1)若購買A,B兩種型號的健身器材共50套,且恰好支出20000元,求A,B兩種型號健身器材各購買多少套?
(2)若購買A,B兩種型號的健身器材共50套,且支出不超過18000元,求A種型號健身器材至少要購買多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任意一條線段EF,其垂直平分線的尺規(guī)作圖痕跡如圖所示.若連接EH,HF,F(xiàn)G,GE,則下列結(jié)論中,不一定正確的是( 。
A.△EGH為等腰三角形
B.△EGF為等邊三角形
C.四邊形EGFH為菱形
D.△EHF為等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(12).

1)寫出點A、B的坐標:

2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,則A′B′C′的三個頂點坐標分別是A′(,)、B′(,)、C′(,).

3△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系網(wǎng)格中,將△ABC進行位似變換得到△A1B1C1

(1)△A1B1C1與△ABC的位似比是;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2
(3)設(shè)點P(a,b)為△ABC內(nèi)一點,則依上述兩次變換后,點P在△A2B2C2內(nèi)的對應(yīng)點P2的坐標是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(12),B(31),C(-2,-1).

1)在圖中作出關(guān)于軸對稱的.

2)寫出點的坐標(直接寫答案).

A1_____________,B1______________C1______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對應(yīng)值:

x

1

2

3

5

7

9

y

1.98

3.95

2.63

1.58

1.13

0.88

小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.
下面是小騰的探究過程,請補充完整:

(1)如圖,在平面直角坐標系xOy中,描出了以上表格中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對應(yīng)的函數(shù)值y約為
②該函數(shù)的一條性質(zhì):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只螞蟻在正方形ABCD區(qū)域內(nèi)爬行,點O是對角線的交點,∠MON=90°,OM,ON分別交線段AB,BC于M,N兩點,則螞蟻停留在陰影區(qū)域的概率為

查看答案和解析>>

同步練習(xí)冊答案