【題目】請(qǐng)寫(xiě)出三個(gè)角都相等的三角形是等邊三角形的逆命題:_____

【答案】等邊三角形的三個(gè)角都相等.

【解析】

把原命題三個(gè)角都相等的三角形是等邊三角形的題設(shè)與結(jié)論進(jìn)行交換即可.

三個(gè)角都相等的三角形是等邊三角形的逆命題為

等邊三角形的三個(gè)角都相等”,

故答案為等邊三角形的三個(gè)角都相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是( 。

A.a+12a2+1B.a-b3b-a2=a-b5C.(﹣2ab238a3b6 D.2x3x2x6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形 ABCD 的對(duì)角線 AC BD 相交于點(diǎn) O,CEBD, DEAC , AD2, DE2,則四邊形 OCED 的面積為( 。

A. 2 B. 4 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,AE⊥BC于點(diǎn)E,AE=BE,DAE上的一點(diǎn),且DE=CE,連接BD,CD.

(1)試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由;

(2)如圖2,若將△DCE繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為把產(chǎn)品打入國(guó)際市場(chǎng),某企業(yè)決定從下面兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn).

方案一生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬(wàn)美元(a為常數(shù),且3a8),每件產(chǎn)品銷售價(jià)為10萬(wàn)美元,每年最多可生產(chǎn)200件;

方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬(wàn)美元,每件產(chǎn)品銷售價(jià)為18萬(wàn)美元,每年最多可生產(chǎn)120.另外,年銷售x乙產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.在不考慮其它因素的情況下:

1)分別寫(xiě)出該企業(yè)兩個(gè)投資方案的年利潤(rùn)y1、與相應(yīng)生產(chǎn)件數(shù)xx為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;

2)請(qǐng)你求出投資方案一可獲得的最大年利潤(rùn);(用含a的代數(shù)式表示)

3)經(jīng)過(guò)測(cè)算投資方案二可獲得的最大年利潤(rùn)為500萬(wàn)美元,請(qǐng)你求出此時(shí)需要年銷售乙產(chǎn)品多少件?

4)如果你是企業(yè)的決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)上月的營(yíng)業(yè)額是a萬(wàn)元,本月?tīng)I(yíng)業(yè)額為500萬(wàn)元,比上月增長(zhǎng)15%,那么可列方程為(

A.15a=500B.1+15%)a=500

C.15%(1a)=500D.1+15a500

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是(

A.對(duì)頂角相等B.內(nèi)錯(cuò)角相等C.銳角相等D.同位角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△OAB的頂點(diǎn)A(-2,4)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為(  )

A. (, ) B. (2,2) C. (,2) D. (2, )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x2(a﹣2)+4(2﹣a)

查看答案和解析>>

同步練習(xí)冊(cè)答案