【題目】如圖所示,在△ABC中,∠BAC=90°,AB=AC,MN是經(jīng)過點A的直線,BD⊥MN,CE⊥MN,垂足分別為D,E.
(1)求證:①∠BAD=∠ACE;②BD=AE.
(2)請寫出BD,CE,DE三者間的數(shù)量關(guān)系式,并證明.
【答案】見解析
【解析】
(1)①由直角三角形兩銳角互余可得∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,從而即可證得∠BAD=∠ACE;
②通過證明△ABD≌△CAE,根據(jù)全等三角形的對應(yīng)邊相等即可得BD=AE;
(2)BD=CE+DE,由△ABD≌△CAE,利用全等三角形對應(yīng)邊相等可得BD=AE,AD=CE,由AE=AD+DE,即可得到BD=CE+DE.
(1)證明:①∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵CE⊥MN,∴∠ACE+∠CAE=90°,
∴∠BAD=∠ACE;
②∵BD⊥MN,CE⊥MN,
∴∠BDA=∠AEC=90°,
在△ABD和△CAE中,
,
∴△ABD≌△CAE,
∴BD=AE;
(2)BD=CE+DE.證明如下:
∵△ABD≌△CAE,
∴BD=AE,AD=CE.
∵AE=AD+DE,
∴BD=CE+DE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙兩個容器,分別裝有進水管和出水管,兩容器的進、出水速度不變,先打開乙容器的進水管,2分鐘時再打開甲容器的進水管,又過2分鐘關(guān)閉甲容器的進水管,再過4分鐘同時打開甲容器的進、出水管.直到12分鐘時,同時關(guān)閉兩容器的進、出水管.打開和關(guān)閉水管的時間忽略不計.容器中的水量y(升)與乙容器注水時間x(分)之間的關(guān)系如圖所示.
(1)求甲容器的進、出水速度;
(2)甲容器的進、出水管都關(guān)閉后,是否存在兩容器的水量相等?若存在,求出此時的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面一段文字,再回答后面的問題.
已知在平面直角坐標(biāo)系內(nèi)兩點P1(x1,y1),P2(x2,y2),點P1,P2間的距離公式P1P2=,同時,當(dāng)兩點所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間的距離公式可簡化為|x2-x1|或|y2-y1|.
(1)已知A(2,4),B(-3,-8),試求A,B兩點間的距離;
(2)已知各頂點坐標(biāo)為A(0,6),B(-3,2),C(3,2),你能判定△ABC的形狀嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、F、E、C在同一直線上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)從圖中任找兩組全等三角形;
(2)從(1)中任選一組進行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,P是BC邊上不同于B,C的一動點,過點P作PQ⊥AB,垂足為Q,連接AP.若AC=3,BC=4,則△AQP的面積的最大值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點A、B;點Q是以C(0,﹣1)為圓心、1為半徑的圓上一動點,過Q點的切線交線段AB于點P,則線段PQ的最小是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1的正方形網(wǎng)格中標(biāo)有A、B、C、D、E、F六個格點,根據(jù)圖中標(biāo)示的各點位置,與△ABC全等的是( 。
A. △ACF B. △ACE C. △ABD D. △CEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,點A,B,C都是格點.
(1)將△ABC向左平移6個單位長度得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞點O按逆時針方向旋轉(zhuǎn)180°得到△A2B2C2,請畫出△A2B2C2;
(3)作出△ABC關(guān)于直線l對稱的△A3B3C3,使A,B,C的對稱點分別是A3,B3,C3;
(4)△A2B2C2與△A3B3C3成______________△A1B1C1與△A2B2C2成_____________(填“中心對稱”或“軸對稱”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com