【題目】如圖①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直線上,點(diǎn)E在AD上,連接DG,BE.
(1)證明:BE=DG;
(2)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示,判斷BE與DG的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
(3)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時(shí),判斷BE與DG的數(shù)量關(guān)系和位置關(guān)系是否與(2)的結(jié)論相同,并說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)BE=DG,BE⊥DG,理由見(jiàn)解析;(3)數(shù)量關(guān)系不成立即BE≠DG,DG=2BE,理由見(jiàn)解析;位置關(guān)系成立,理由見(jiàn)解析
【解析】
(1)根據(jù)正方形的性質(zhì)及全等三角形的判定可得△ABE≌△DAG(SAS),再根據(jù)全等三角形的性質(zhì)即可得出結(jié)論;
(2)根據(jù)正方形的性質(zhì)可知:AE=AG,AB=AD,∠BAD=∠EAG=90°,再根據(jù)同腳的余角相等得出∠BAE=∠DAG,然后根據(jù)全等三角形的判定定理得出△ABE≌△DAG(SAS)再由全等三角形的性質(zhì)定理可得出BE=DG,∠ABE=∠ADG;延長(zhǎng)BE交AD于T,交DG于H.進(jìn)而得出∠DHB=90°,即BE⊥DG.
(3)根據(jù)四邊形ABCD和四邊形AEFG都是矩形,且AD=2AB,AG=2AE時(shí),則△ABE∽△ADG,再根據(jù)相似三角形的性質(zhì)即可得出結(jié)論.
解:(1)證明:∵四邊形ABCD和四邊形AEFG是正方形,
∴AE=AG,AB=AD,∠BAD=∠EAG=90°,
∴△ABE≌△DAG(SAS),
∴BE=DG;
(2)BE=DG,BE⊥DG.
如圖1中,∵四邊形ABCD和四邊形AEFG是正方形,
∴AE=AG,AB=AD,∠BAD=∠EAG=90°,
∴∠BAE=∠DAG,
在△ABE和△DAG中,
,
∴△ABE≌△DAG(SAS),
∴BE=DG;∠ABE=∠ADG,
延長(zhǎng)BE交AD于T,交DG于H.
∵∠ATB+∠ABE=90°,
∴∠ATB+∠ADG=90°,
∵∠ATB=∠DTH,
∴∠DTH+∠ADG=90°,
∴∠DHB=90°,
∴BE⊥DG.
(3)數(shù)量關(guān)系不成立,它們的數(shù)量關(guān)系為DG=2BE,位置關(guān)系成立.
如圖2中,延長(zhǎng)BE交AD于T,交DG于H.
∵四邊形ABCD與四邊形AEFG都為矩形,
∴∠BAD=∠DAG,
∴∠BAE=∠DAG,
∵AD=2AB,AG=2AE,
∴,
∴△ABE∽△ADG,
∴∠ABE=∠ADG,,
∴DG=2BE,
∵∠ATB+∠ABE=90°,
∴∠ATB+∠ADG=90°,
∵∠ATB=∠DTH,
∴∠DTH+∠ADG=90°,
∴∠DHB=90°,
∴BE⊥DG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),AC是⊙O的直徑.
(1)若∠BAC=25°,求∠P的度數(shù);
(2)若∠P=60°,PA=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位計(jì)劃從商店購(gòu)買同一種品牌的鋼筆和筆記本,已知購(gòu)買一支鋼筆比購(gòu)買一個(gè)筆記本多用20元,若用1500元購(gòu)買鋼筆和用600元購(gòu)買筆記本,則購(gòu)買鋼筆的數(shù)量是購(gòu)買筆記本數(shù)量的一半.
(1)求購(gòu)買一支鋼筆、一個(gè)筆記本各需要多少元?
(2)經(jīng)商談,商店給予優(yōu)惠,優(yōu)惠方式是每購(gòu)買一支鋼筆贈(zèng)送一個(gè)筆記本;如果此單位需要筆記本的數(shù)量是鋼筆數(shù)量的3倍還少6個(gè),且購(gòu)買鋼筆和筆記本的總費(fèi)用不超過(guò)1020元,那么最多可購(gòu)買多少支鋼筆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到△DEC,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是D、E,點(diǎn)F是邊AC中點(diǎn),①△BCE是等邊三角形,②DE=BF,③△ABC≌△CFD,④四邊形BEDF是平行四邊形.則其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣ax2+bx+3與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).
(1)求直線AC及拋物線的解析式,并求出D點(diǎn)的坐標(biāo);
(2)若P為線段BD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P是x軸上一個(gè)動(dòng)點(diǎn),過(guò)P作直線1∥AC交拋物線于點(diǎn)Q,試探究:隨著P點(diǎn)的運(yùn)動(dòng),在拋物線上是否存在點(diǎn)Q,使以點(diǎn)A、P、Q、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年12月以來(lái),湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實(shí)該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強(qiáng).為了有效地避免交叉感染,需要采取以下防護(hù)措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹(jǐn)慎吃.某公司為了解員工對(duì)防護(hù)措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過(guò)網(wǎng)上問(wèn)卷調(diào)查的方式進(jìn)行了隨機(jī)抽樣調(diào)查(每名員工必須且只能選擇一項(xiàng)),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)上面的信息,解答下列問(wèn)題
(1)本次共調(diào)查了_______名員工,條形統(tǒng)計(jì)圖中________;
(2)若該公司共有員工1000名,請(qǐng)你估計(jì)不了解防護(hù)措施的人數(shù);
(3)在調(diào)查中,發(fā)現(xiàn)有4名員工對(duì)防護(hù)措施很了解,其中有3名男員工、1名女員工.若準(zhǔn)備從他們中隨機(jī)抽取2名,讓其在公司群內(nèi)普及防護(hù)措施,求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=90°,∠OAB=30°,反比例函數(shù)的圖象過(guò)點(diǎn),反比例函數(shù)的圖象過(guò)點(diǎn)A
(1)求和的值.
(2)過(guò)點(diǎn)B作BC∥x軸,與雙曲線交于點(diǎn)C,求△OAC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實(shí)線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含a,b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y1的圖象與反比例函數(shù)y2的圖象相交于點(diǎn)A(2,-4),下列說(shuō)法正確的是( )
A.反比例函數(shù)y2的解析式是
B.兩個(gè)函數(shù)圖象的另一交點(diǎn)坐標(biāo)為(2,4)
C.當(dāng)x<-2或0<x<2時(shí),y1>y2
D.正比例函數(shù)y1與反比例函數(shù)y2都隨x的增大而減小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com