【題目】將直線y=2x﹣4向上平移5個單位后,所得直線的表達(dá)式是________.那么將直線y=2x﹣4沿x軸向右平移3個單位得到的直線方程是________

【答案】 y=2x+1 y=2x﹣10

【解析】解:將直線y=2x﹣4向上平移5個單位后,所得直線的表達(dá)式是y=2x﹣4+5=2x+1.將直線y=2x﹣4沿x軸向右平移3個單位得到的直線方程是y=2(x-3)﹣4﹣3=2x﹣10; 故答案為:y=2x+1;y=2x﹣10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,點A、O、B依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒2°的速度旋轉(zhuǎn),同時射線OB繞點O沿逆時針方向以每秒4°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時間為t(0秒≤t≤90秒).

(1)用含t的代數(shù)式表示∠MOA的度數(shù).
(2)在運動過程中,當(dāng)∠AOB第二次達(dá)到60°時,求t的值.
(3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過180°的角)的平分線?如果存在,請直接寫出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E .

(1)求直線BC的解析式;

(2)當(dāng)線段DE的長度最大時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B在一直線上,小明從點A出發(fā)沿AB方向勻速前進(jìn),4秒后走到點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)沿AB方向以同樣的速度勻速前進(jìn)4秒后到點F,此時他(EF)的影長為2米,然后他再沿AB方向以同樣的速度勻速前進(jìn)2秒后達(dá)點H,此時他(GH)處于燈光正下方.

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

(2)求小明沿AB方向勻速前進(jìn)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公司(A點)與公路(直線L)的距離為300米,又與公路車站(D點)的距離為500米,現(xiàn)要在公路邊建一個物流站(C點),使之與該公司A及車站D的距離相等,求物流站與車站之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點DAB邊上的一點,

(1)試說明:∠EAC=∠B ;

(2)若AD=15,BD=36,求DE的長.

(3)若點DA、B之間移動,當(dāng)點D為 時,ACDE互相平分.

(直接寫出答案,不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ).

A.同位角相等B.三點可以確定一個圓

C.等腰三角形兩底角相等D.對角線相等且垂直的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點在格點上.

1作出與△ABC關(guān)于x軸對稱的圖形△A1B1C1;

2)求出A1,B1,C1三點坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個三角形的兩邊長是34,第三邊的長是方程x26x+50的一個根,則該三角形的周長是_____

查看答案和解析>>

同步練習(xí)冊答案