(1)先求解下列兩題:
①如圖①,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
②如圖②,在直角坐標(biāo)系中,點A在y軸正半軸上,AC∥x軸,點B,C的橫坐標(biāo)都是3,且BC=2,點D在AC上,且橫坐標(biāo)為1,若反比例函數(shù)的圖象經(jīng)過點B,D,求k的值.
(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點?請簡單地寫出.

【答案】分析:(1)①根據(jù)等邊對等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,計算即可求解;
②先根據(jù)反比例函數(shù)圖象上的點的坐標(biāo)特征表示出點B的坐標(biāo),再表示出點C的坐標(biāo),然后根據(jù)AC∥x軸可得點C、D的縱坐標(biāo)相同,從而表示出點D的坐標(biāo),再代入反比例函數(shù)解析式進(jìn)行計算即可得解.
(2)從數(shù)學(xué)思想上考慮解答.
解答:解:(1)①∵AB=BC=CD=DE,
∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,
根據(jù)三角形的外角性質(zhì),∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,
又∵∠EDM=84°,
∴∠A+3∠A=84°,
解得,∠A=21°;

②∵點B在反比例函數(shù)y=圖象上,點B,C的橫坐標(biāo)都是3,
∴點B(3,),
∵BC=2,
∴點C(3,+2),
∵AC∥x軸,點D在AC上,且橫坐標(biāo)為1,
∴D(1,+2),
∵點D也在反比例函數(shù)圖象上,
+2=k,
解得,k=3;

(2)用已知的量通過關(guān)系去表達(dá)未知的量,使用轉(zhuǎn)換的思維和方法.(開放題)
點評:本題考查了等腰三角形兩底角相等的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),以及反比例函數(shù)圖象上點的坐標(biāo)特征,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•杭州)(1)先求解下列兩題:
①如圖①,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
②如圖②,在直角坐標(biāo)系中,點A在y軸正半軸上,AC∥x軸,點B,C的橫坐標(biāo)都是3,且BC=2,點D在AC上,且橫坐標(biāo)為1,若反比例函數(shù)y=
kx
(x>0)
的圖象經(jīng)過點B,D,求k的值.
(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點?請簡單地寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江杭州卷)數(shù)學(xué)(帶解析) 題型:解答題

(1)先求解下列兩題:①如圖①,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);②如圖②,在直角坐標(biāo)系中,點A在y軸正半軸上,AC∥x軸,點B,C的橫坐標(biāo)都是3,且BC=2,點D在AC上,且橫坐標(biāo)為1,若反比例函數(shù)的圖象經(jīng)過點B,D,求k的值.
(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點?請簡單地寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年中考數(shù)學(xué)二輪精品復(fù)習(xí)開放型問題練習(xí)卷(解析版) 題型:解答題

1)先求解下列兩題:


如圖,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知EDM=84°,求A的度數(shù);
如圖,在直角坐標(biāo)系中,點Ay軸正半軸上,ACx軸,點B,C的橫坐標(biāo)都是3,且BC=2,點DAC上,且橫坐標(biāo)為1,若反比例函數(shù) (x0)的圖象經(jīng)過點B,D,求k的值.
2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點?請簡單地寫出.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江杭州卷)數(shù)學(xué)(解析版) 題型:解答題

(1)先求解下列兩題:①如圖①,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);②如圖②,在直角坐標(biāo)系中,點A在y軸正半軸上,AC∥x軸,點B,C的橫坐標(biāo)都是3,且BC=2,點D在AC上,且橫坐標(biāo)為1,若反比例函數(shù)的圖象經(jīng)過點B,D,求k的值.

(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點?請簡單地寫出.

 

查看答案和解析>>

同步練習(xí)冊答案