【題目】在平面直角坐標(biāo)系xOy中,對于任意三點(diǎn)A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.
(1)已知A(2,3),B(5,0),C(, 2).
①當(dāng)時,點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為 ;
②若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;
(2)已知點(diǎn)D(1,1),點(diǎn)E(, ),其中點(diǎn)E是函數(shù)的圖像上一點(diǎn),⊙P是點(diǎn)O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
【答案】(1)①35;②②t =-3或6;(2)
【解析】試題分析:(1)①由矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形,得出最優(yōu)覆蓋矩形的長為:2+5=7,寬為3+2=5,即可得出結(jié)果;
②由定義可知,t=-3或6;
(2)OD所在的直線交雙曲線于點(diǎn)E,矩形OFEG是點(diǎn)O,D,E的一個面積最小的最優(yōu)覆蓋矩形,OD所在的直線表達(dá)式為y=x,得出點(diǎn)E的坐標(biāo)為(2,2),⊙H的半徑最小r=,當(dāng)點(diǎn)E的縱坐標(biāo)為1時,⊙H的半徑最大r=,即可得出結(jié)果;
試題解析:
解:(1):(1)①∵A(-2,3),B(5,0),C(2,-2),矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形,
∴最優(yōu)覆蓋矩形的長為:2+5=7,寬為3+2=5,
∴最優(yōu)覆蓋矩形的面積為:7×5=35;
②∵點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,
∴由定義可知,t=-3或6,
(2)如圖1,OD所在的直線交雙曲線于點(diǎn)E,矩形OFEG是點(diǎn)O,D,E的一個面積最小的最優(yōu)覆蓋矩形,
∵點(diǎn)D(1,1),
∴OD所在的直線表達(dá)式為y=x,
∴點(diǎn)E的坐標(biāo)為(2,2),
∴OE=,
∴⊙H的半徑r =,
如圖2,
∵當(dāng)點(diǎn)E的縱坐標(biāo)為1時,1=,解得x=4,
∴OE==,
∴⊙H的半徑r =,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店購進(jìn)一種商品進(jìn)行銷售,進(jìn)價為每件40元,售價為每件60元,每月可賣出300件.市場調(diào)查反映:調(diào)整價格時,售價每漲1元每月要少賣10件;售價每下降1元每月要多賣20件.為了獲得更大的利潤,現(xiàn)將商品售價調(diào)整為60+x(元/件)(x>0即售價上漲,x<0即售價下降),每月商品銷量為y(件),月利潤為w(元).
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售價格是多少時才能使月利潤最大?最大月利潤時多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,AB=AC,∠B=α.
(1)如圖1,點(diǎn)D,E分別在邊AB,AC上,線段DE的垂直平分線MN交直線BC于點(diǎn)M,交DE于點(diǎn)N,求證:BD+CE=BC.需補(bǔ)充條件∠EMN= (用含α的式子表示)補(bǔ)充條件后并證明;
(2)把(1)中的條件改為點(diǎn)D,E分別在邊BA、AC延長線上,線段DE的垂直平分線MN交直線BC于點(diǎn)M,交DE于點(diǎn)N(如圖2),并補(bǔ)充條件∠EMN=(用含α的式子表示),通過觀察或測量,猜想線段BD,CE與BC之間滿足的數(shù)量關(guān)系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋裝有若干個紅、黃、藍(lán)、綠四種顏色的小球,小球除顏色外完全相同,為估計(jì)該口袋中四種顏色的小球數(shù)量,每次從口袋中隨機(jī)摸出一球記下顏色并放回,重復(fù)多次試驗(yàn),匯總實(shí)驗(yàn)結(jié)果繪制如圖不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問題:
(1)求實(shí)驗(yàn)總次數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中,摸到黃色小球次數(shù)所在扇形的圓心角度數(shù)為多少度?
(3)已知該口袋中有10個紅球,請你根據(jù)實(shí)驗(yàn)結(jié)果估計(jì)口袋中綠球的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“夕陽紅”養(yǎng)老院共有普通床位和高檔床位共500張.已知今年一月份入住普通床位老人300人,入住高檔床位老人90人,共計(jì)收費(fèi)51萬元;今年二月份入住普通床位老人350人,入住高檔床位老人100人,共計(jì)收費(fèi)58萬元.
(1)求普通床位和高檔床位每月收費(fèi)各多少元?
(2)根據(jù)國家養(yǎng)老政策規(guī)定,為保障普通居民的養(yǎng)老權(quán)益,所有實(shí)際入住高檔床位數(shù)不得超過實(shí)際入住普通床位數(shù)的三分之一;另外為扶持養(yǎng)老企業(yè)發(fā)展國家民政局財政對每張入住的床位平均每年都是給予養(yǎng)老院企業(yè)2400元的補(bǔ)貼.經(jīng)測算,該養(yǎng)老院普通床位的運(yùn)營成本是每月1200元/張,入住率為90%;高檔床位的運(yùn)營成本是每月2000元/張,入住率為70%.問該養(yǎng)老院應(yīng)該怎樣安排500張床的普通床位和高檔床位數(shù)量,才能使每月的利潤最大,最大為多少元?(月利潤=月收費(fèi)-月成本+月補(bǔ)貼)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,AB=BD,點(diǎn)B、C、D、G四個點(diǎn)在同一個圓⊙O上,連接BG 并延長交AD于點(diǎn)F,連接DG并延長交AB于點(diǎn)E,BD與CG交于點(diǎn)H,連接FH,下列結(jié) 論:①AE=DF;②FH∥AB;③△DGH∽△BGE;④當(dāng)CG為⊙O的直徑時,DF=AF.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織同學(xué)們春游,如果全部租45座的車,則有15人沒座位;如果全部租60座的車,那么空出一輛車,其余車剛好座滿,設(shè)有x輛車,那么可列出一元一次方程為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com