【題目】某商品進價為60,現(xiàn)在的售價為100每周可售出100件.市場調(diào)查發(fā)現(xiàn)每降價1,每周可多賣出20件.若設(shè)每件降價xx為整數(shù)),每周的銷量為y

1請寫出yx之間的函數(shù)關(guān)系式;

2當售價定為多少時,每周的利潤最大?最大利潤是多少?

【答案】1;(2)當售價定為83元或82元時每周利潤最大,最大利潤為10120元.

【解析】試題分析:(1)設(shè)降價x元,根據(jù)銷售量=原銷量+因價格下降而增加的銷量可得;

2)根據(jù)總利潤=單件利潤×銷售量,列出解析式,然后利用配方法求出二次函數(shù)最值得出答案.

試題解析:解:(1y=20x+100

2)設(shè)當每件降價x元時,每周的利潤為W元,則:

,

,

∵-20<0x為整數(shù),∴當x=1718時,W的值最大為10120,

100-x=8382

答:當售價定為83元或82元時每周利潤最大,最大利潤為10120

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2(2k1)xk210有兩個實數(shù)根x1x2

(1)求實數(shù)k的取值范圍;

(2)x1,x2滿足x12x2216x1x2,求實數(shù)k的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點O為原點,A點表示數(shù)a,B點表示數(shù)b,且a、b滿足|a+2|+|b-4|=0;

(1)A表示的數(shù)為   ;點B表示的數(shù)為   

(2)如果MN為數(shù)軸上兩個動點.M從點A出發(fā),速度為每秒1個單位長度;點N從點B出發(fā),速度為點A3倍,它們同時向左運動.

①當運動2秒時,點M、N對應(yīng)的數(shù)分別是 、 .

②當運動t秒時,點M、N對應(yīng)的數(shù)分別是 、 .(用含t的式子表示)

③運動多少秒時,點M、N、O中恰有一個點為另外兩個點所連線段的中點?(可以直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

在初中數(shù)學課本中重點介紹了提公因式法和運用公式法兩種因式分解的方法,其中運用公式法即運用平方差公式:a2-b2=a+b)(a-b)和完全平方公式:a2±2ab+b2=a±b2進行分解因式,能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(shù)(或式)的平方和的形式,另一項是這兩個數(shù)(或式)的積的2倍.當一個二次三項式不能直接運用完全平方公式分解因式時,可應(yīng)用下面方法分解因式,先將多項式ax2+bx+ca≠0)變形為ax+m2+n的形式,我們把這樣的變形方法叫做多項式ax2+bx+c的配方法.再運用多項式的配方法及平方差公式能對一些多項式進行分解因式.

例如:x2+8x+7

=x2+8x+16-16+7

=(x+42-9

=(x+4+3)(x+4-3)

=(x+7)(x+1)

根據(jù)以上材料,完成相應(yīng)的任務(wù):

1)利用多項式的配方法x2+2x-3化成ax+m2+n的形式為_______

2)請你利用上述方法因式分解:

x2+6x+8;

x2-6x-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)k≠0)在第一象限的圖象交于A(1,n)和B兩點.

(1)求反比例函數(shù)的解析式及點B坐標;

(2)在第一象限內(nèi),當一次函數(shù)y=-x+5的值大于反比例函數(shù)k≠0)的值時,寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點EAE=2,EB=6,DEB=30°,求弦CD長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,點A的坐標為(﹣4,3),點B的坐標為(﹣3,1),BC=2,BC∥x軸.

(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1;并寫出A1,B1,C1的坐標;

(2)求以點A、B、B1、A1為頂點的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛紀錄如下。(單位:km)

(1)求收工時距A地多遠?

(2)在第______次紀錄時距A地最遠。

(3)若每千米耗油0.3升,問共耗油多少升?

查看答案和解析>>

同步練習冊答案