【題目】(1)如圖 a,若 ABCD,點(diǎn) PAB、CD 外部,則∠BPD、∠B、∠D 之間有何數(shù)量關(guān)系?

把下面的解答填上根據(jù):

解:∠B=∠BPD+PDC

理由:作PEAB

ABCD ( )

ABCDPE ( )

∴∠B=∠BPE, ∠D=∠DPE ( )

∵∠BPE=∠BPD+DPE

∴∠B=∠BPD+PDC ( )

(2)若ABCD,將點(diǎn)P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說(shuō)明理由;若不成立,則∠BPD、∠B、∠D 之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

(3)在圖 b 中,將直線 AB 繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線 CD 于點(diǎn) Q,如圖 c,則∠BPD、∠B、∠D、∠BQD 之間滿足的數(shù)量關(guān)系是 .

【答案】(1)答案見(jiàn)解析;(2)∠BPD=∠B+∠D,理由見(jiàn)解析;(3)∠BPD=B+∠D+∠BQD

【解析】試題分析:1BOD是三角形OPD的一個(gè)外角,由此可得出三個(gè)角的關(guān)系.

2)過(guò)P作平行于AB的直線,根據(jù)內(nèi)錯(cuò)角相等可得出三個(gè)角的關(guān)系.(3)連接BD,QP,并且延長(zhǎng)QPBDE,則∠BPD=BPE+EPD=PBQ+BQP+PDQ+DQP=PBQ+PDQ+BQD

試題解析:

(1)

∵三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和,∴∠BOD=BPD+D.

已知;平行于同一條直線的兩條直線平行;兩直線平行,內(nèi)錯(cuò)角相等;等量代換

(2)

過(guò)P作平行于AB的直線PO,

∵∠BPD=BPO+OPDBPO=B,OPD=D,

∴∠BPD=B+D.

(3)

∵∠BQP+QBP=BPE

DQP+QDP=DPE,

∴∠BPD=PBQ+PDQ+BQD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AC=BC,點(diǎn)DBC的中點(diǎn),DEAB,垂足為點(diǎn)E,過(guò)點(diǎn)BBGACDE的延長(zhǎng)線于點(diǎn)G.

1)求證:DB=BG

2)當(dāng)ACB=90°時(shí),如圖,連接AD、CG,求證:ADCG。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是真命題的有(  )

①對(duì)頂角相等;②兩直線平行,內(nèi)錯(cuò)角相等;③兩個(gè)銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;④有三個(gè)角是直角的四邊形是矩形;⑤平分弦的直徑垂直于弦,并且平分弦所對(duì)的。

A. .1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:m4m3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x2﹣2x﹣2=0,則代數(shù)式3x2﹣6x+2018的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在x軸的上方,直角∠BOA繞原點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn),若∠BOA的兩邊分別與函數(shù)y=-、y=的圖象交于B、A兩點(diǎn),則∠OAB的大小的變化趨勢(shì)為(

A.逐漸變小 B.逐漸變大 C.時(shí)大時(shí)小 D.保持不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線L:y=ax2+bx+ca,b,c是常數(shù),abc≠0與直線l都經(jīng)過(guò)y軸上的一點(diǎn)P,且拋物線L的頂點(diǎn)Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關(guān)系.此時(shí),直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.

1若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關(guān)系,求m,n的值;

2若某“路線”L的頂點(diǎn)在反比例函數(shù)y=的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;

3當(dāng)常數(shù)k滿足≤k≤2時(shí),求拋物線L:y=ax2+3k2﹣2k+1x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:HE=HF;EC平分DCH線段BF的取值范圍為3≤BF≤4;當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面的計(jì)算不正確的是( 。
A.5a3a3=4a3
B.2m3n=6m+n
C.2m2n=2m+n
D.﹣a2(﹣a3)=a5

查看答案和解析>>

同步練習(xí)冊(cè)答案