【題目】某商場為了吸引顧客,設立了一個可以自由轉動的轉盤,如圖所示,并規(guī)定:顧客消費200元(含200元)以上,就能獲得一次轉動轉盤的機會,如果轉盤停止后,指針正好對準九折、八折、七折區(qū)域,顧客就可以獲得此項優(yōu)惠,如果指針恰好在分割線上時,則需重新轉動轉盤.
(1)某顧客正好消費220元,他轉一次轉盤,他獲得九折、八折、七折優(yōu)惠的概率分別是多少?
(2)某顧客消費中獲得了轉動一次轉盤的機會,實際付費168元,請問他消費所購物品的原價應為多少元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在OABC中C(2,0),AC⊥OC,反比例函數(shù)y=(k>0)在第一象限內的圖象過點A,且與BC交于點D,點D的橫坐標為3,連接AD,△ABD的面積為,則k的值為( )
A.4B.5C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D是BC邊的中點,以D為頂點作一個120°的角,角的兩邊分別交直線AB,AC于M,N兩點,以點D為中心旋轉∠MDN(∠MDN的度數(shù)不變),若DM與AB垂直時(如圖①所示),易證BM +CN =BD.
(1)如圖②,若DM與AB不垂直時,點M在邊AB上,點N在邊AC上,上述結論是否成立?若成立,請給予證明;若不成立,請說明理由;
(2)如圖③,若DM與AB不垂直時,點M在邊AB.上,點N在邊AC的延長線上,上述結論是否成立?若不成立,請寫出BM,CN,BD之間的數(shù)量關系,不用證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】心理學家發(fā)現(xiàn):課堂上,學生對概念的接受能力s與提出概念的時間t(單位:min)之間近似滿足函數(shù)關系s=at2+bt+c(a≠0),s值越大,表示接受能力越強.如圖記錄了學生學習某概念時t與s的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出當學生接受能力最強時,提出概念的時間為( 。
A. 8min B. 13min C. 20min D. 25min
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B.
(1)求證:AC·CD=CP·BP;
(2)若AB=10,BC=12,當PD∥AB時,求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知梯形中,,,,,是邊上一點,過、分別作、的平行線交于點,聯(lián)結并延長,與射線交于點.
(1)當點與點重合時,求的值;
(2)當點在邊.上時,設,求的面積;(用含的代數(shù)式表示)
(3)當時,求的余弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,點D在邊BC上,點E在線段AD上,EF⊥AC于點F,EG⊥EF交AB于點G,若EF=EG,則CD的長為( )
A.3.6B.4C.4.8D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com