【題目】某班同學(xué)響應(yīng)“陽(yáng)光體育運(yùn)動(dòng)”號(hào)召,利用課外活動(dòng)積極參加體育鍛煉,每位同學(xué)從長(zhǎng)跑、鉛球、立定跳遠(yuǎn)、籃球定時(shí)定點(diǎn)投籃中任選一項(xiàng)進(jìn)行了訓(xùn)練,訓(xùn)練前后都進(jìn)行了測(cè)試,現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃進(jìn)球數(shù)(每人投10次)進(jìn)行整理,作出如下統(tǒng)計(jì)圖表.
進(jìn)球數(shù)(個(gè)) | 8 | 7 | 6 | 5 | 4 | 3 |
人數(shù) | 2 | 1 | 4 | 7 | 8 | 2 |
請(qǐng)你根據(jù)圖表中的信息回答下列問(wèn)題:
(1)訓(xùn)練后籃球定時(shí)定點(diǎn)投籃人均進(jìn)球數(shù)為 個(gè);進(jìn)球數(shù)的中位數(shù)為 個(gè),眾數(shù)為 個(gè);
(2)該班共有多少學(xué)生;
(3)根據(jù)測(cè)試資料,參加籃球定時(shí)定點(diǎn)投籃的學(xué)生訓(xùn)練后比訓(xùn)練前的人均進(jìn)球增加了20%,求參加訓(xùn)練之前的人均進(jìn)球數(shù)(保留一位小數(shù)).
【答案】(1)5,5,4;(2)40;(3)4.2個(gè)
【解析】試題分析:(1)根據(jù):人均進(jìn)球數(shù)= ,求解即可;將數(shù)據(jù)按照從小到大的順序排列,根據(jù)中位數(shù)和眾數(shù)的概念求解;
(2)根據(jù)選擇籃球的學(xué)生人數(shù)和選擇籃球的學(xué)生人數(shù)所占全班人數(shù)的百分比,求解即可;
(3)設(shè)參加訓(xùn)練之前的人均進(jìn)球數(shù)為x個(gè),然后根據(jù)題意列出方程求解即可.
解:(1)人均進(jìn)球數(shù)== =5(個(gè));
根據(jù)中位數(shù)的概念,由圖表可得出第12和第13名學(xué)生的進(jìn)球數(shù)均為5個(gè),故進(jìn)球數(shù)的中位數(shù)為=5(個(gè)),
從圖表可以看出進(jìn)球數(shù)為4個(gè)的學(xué)生人數(shù)最多,故進(jìn)球數(shù)的眾數(shù)為4個(gè),
故訓(xùn)練后籃球定時(shí)定點(diǎn)投籃人均進(jìn)球數(shù)為5個(gè);進(jìn)球數(shù)的中位數(shù)為5個(gè),眾數(shù)為 4個(gè);
(2)全班學(xué)生的總?cè)藬?shù)為:24÷60%=40(人);
答:該班共有40個(gè)學(xué)生.
(3)設(shè)參加訓(xùn)練之前的人均進(jìn)球數(shù)為x個(gè),
則有:x(1+20%)=5,
解得:x=4.2.
答:參加訓(xùn)練之前的人均進(jìn)球數(shù)為4.2個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A、B、C三點(diǎn)在格點(diǎn)上.
①作出△ABC關(guān)于x軸對(duì)稱的△A1B1C1 , 并寫出點(diǎn)C1的坐標(biāo);②在y軸上找點(diǎn)D,使得AD+BD最小,作出點(diǎn)D并寫出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華和小麗兩人玩游戲,她們準(zhǔn)備了A、B兩個(gè)分別被平均分成三個(gè)、四個(gè)扇形的轉(zhuǎn)盤.游戲規(guī)則:小華轉(zhuǎn)動(dòng)A盤、小麗轉(zhuǎn)動(dòng)B盤.轉(zhuǎn)動(dòng)過(guò)程中,指針保持不動(dòng),如果指針恰好指在分割線上,則重轉(zhuǎn)一次,直到指針指向一個(gè)數(shù)字所在的區(qū)域?yàn)橹梗畠蓚(gè)轉(zhuǎn)盤停止后指針?biāo)竻^(qū)域內(nèi)的數(shù)字之和小于6,小華獲勝.指針?biāo)竻^(qū)域內(nèi)的數(shù)字之和大于6,小麗獲勝.
(1)用樹(shù)狀圖或列表法求小華、小麗獲勝的概率;
(2)這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)判斷并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將(a﹣1)2﹣1分解因式,結(jié)果正確的是( )
A.a(a﹣1)
B.a(a﹣2)
C.(a﹣2)(a﹣1)
D.(a﹣2)(a+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B(2,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,8).
(1)求該拋物線的解析式;
(2)若將該拋物線向下平移m個(gè)單位長(zhǎng)度,使平移后所得拋物線的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)已知點(diǎn)Q在x軸上,點(diǎn)P在拋物線上,是否存在以A、C、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為原點(diǎn),點(diǎn)的坐標(biāo)為.如圖,正方形的頂點(diǎn)在軸的負(fù)半軸上,點(diǎn)在第二象限.現(xiàn)將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)角得到正方形.
()如圖,若, ,求直線的函數(shù)表達(dá)式.
()若為銳角, ,當(dāng)取得最小值時(shí),求正方形的面積.
()當(dāng)正方形的頂點(diǎn)落在軸上時(shí),直線與直線相交于點(diǎn), 的其中兩邊之比能否為?若能,求出的坐標(biāo);若不能,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com