【題目】完成下面的證明過程:
已知:如圖,,,.
求證:.
證明:∵,(已知)
∴.
∴,( )
又∵,(已知)
∴______,(內(nèi)錯角相等,兩直線平行)
∴_______,( )
∴.( )
【答案】同旁內(nèi)角互補,兩直線平行;AD;BC;如果兩條直線平行于第三條直線,那么它們互相平行;兩直線平行,同位角相等.
【解析】
求出∠D+∠EFD=180,根據(jù)平行線的判定得出AD∥EF和 AD∥BC,即可得出EF∥BC,根據(jù)平行線的性質(zhì)得出即可.
證明:∵∠D=123,∠EFD=57(已知),
∴∠D+∠EFD=180,
∴AD∥EF(同旁內(nèi)角互補,兩直線平行),
又∵∠1=∠2(已知)
∴AD∥BC(內(nèi)錯角相等,兩直線平行)
∴EF∥BC(平行于同一條直線的兩直線平行),
∴∠3=∠B(兩直線平行,同位角相等),
故答案為:同旁內(nèi)角互補,兩直線平行;AD;BC;如果兩條直線平行于第三條直線,那么它們互相平行;兩直線平行,同位角相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你會求(a﹣1)(a2012+a2011+a2010+…+a2+a+1)的值嗎?這個問題看上去很復(fù)雜,我們可以先考慮簡單的情況,通過計算,探索規(guī)律:
,
,
,
(1)由上面的規(guī)律我們可以大膽猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=
利用上面的結(jié)論,求:
(2)22014+22013+22012+…+22+2+1的值是 .
(3)求52014+52013+52012+…+52+5+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,∠BAC的平分線交BC于D,過點C作CG⊥AB于G,交AD于E,過點D作DF⊥AB于F.下列結(jié)論①∠CED= ;②;③∠ADF= ;④CE=DF.正確的是( )
A. ①②④ B. ②③④ C. ①③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC =3,BC =4,AB=5,BD平分∠ABC,如果M、N分別為BD、BC上的動點,那么CM+MN的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個長為,寬為的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個正方形.
(1)請用兩種不同方法,求圖2中陰影部分的面積(不用化簡)
方法1:____________________
方法2:____________________
(2)觀察圖2,寫出,,之間的等量關(guān)系,并驗證;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①若,,求的值;
②若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖象與一次函數(shù)y=3x的圖象相交于點A,其橫坐標為2.
(1)求k的值;
(2)點B為此反比例函數(shù)圖象上一點,其縱坐標為3.過點B作CB∥OA,交x軸于點C,直接寫出線段OC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com