解:(1)∵點D是OA的中點,
∴OD=2,
∴OD=OC.
又∵OP是∠COD的角平分線,
∴∠POC=∠POD=45°,
∴△POC≌△POD,
∴PC=PD.
(2)過點B作∠AOC的平分線的垂線,垂足為P,點P即為所求.
易知點F的坐標為(2,2),故BF=2,作PM⊥BF,
∵△PBF是等腰直角三角形,
∴PM=
BF=1,
∴點P的坐標為(3,3).
∵拋物線經過原點,
∴設拋物線的解析式為y=ax
2+bx.
又∵拋物線經過點P(3,3)和點D(2,0),
∴有
解得
∴拋物線的解析式為y=x
2-2x;
(3)由等腰直角三角形的對稱性知D點關于∠AOC的平分線的對稱點即為C點.
連接EC,它與∠AOC的平分線的交點即為所求的P點(因為PE+PD=EC,而兩點之間線段最短),此時△PED的周長最小.
∵拋物線y=x
2-2x的頂點E的坐標(1,-1),C點的坐標(0,2),
設CE所在直線的解析式為y=kx+b,
則有
,
解得
.
∴CE所在直線的解析式為y=-3x+2.
點P滿足
,
解得
,
故點P的坐標為
.
△PED的周長即是CE+DE=
+
;
(4)假設存在符合條件的P點.矩形的對稱中心為對角線的交點,故N(2,1).
①當P點在N點上方時,由(2)知F(2,2),且∠NFC=90°,顯然F點符合P點的要求,故P(2,2);
②當P點在N點下方時,設P(a,a),則:∵C(0,2),N(2,1),∴由勾股定理得,CP
2+PN
2=CN
2,即a
2+(a-2)
2+(2-a)
2+(1-a)
2=5,即4a
2-10a+4=0,解得a=
或a=2,故P(
,
),
綜上可知:存在點P,使∠CPN=90度.其坐標是
或(2,2).
分析:本題綜合考查了三角形全等、一次函數(shù)、二次函數(shù),及線段最短和探索性的問題.
(1)通過△POC≌△POD而證得PC=PD.
(2)首先要確定P點的位置,再求出P、F兩點坐標,利用待定系數(shù)法求的拋物線解析式;
(3)此問首先利用對稱性確定出P點位置是EC與∠AOC的平分線的交點,再利用拋物線與直線CE的解析式求出交點P的坐標.進而求的△PED的周長;
(4)要使∠CPN=90°,則P點是以CN的中點為圓心以CN為直徑的圓與角平分線的交點,由此就易于寫出P點的坐標.
點評:函數(shù)與四邊形或三角形的綜合考查,是近幾年中考的一個熱點問題.對于這類問題,通常需要學生熟悉掌握多邊形與函數(shù)的概念與性質及兩者之間的聯(lián)系.