(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線(xiàn)交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線(xiàn)的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線(xiàn)交拋物線(xiàn)于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線(xiàn)段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)已知了拋物線(xiàn)過(guò)A,B,C三點(diǎn),可根據(jù)三點(diǎn)的坐標(biāo)用待定系數(shù)法求出拋物線(xiàn)的解析式.
(2)由于CD是圓的切線(xiàn),設(shè)圓心為O′,可連接O′C,在直角三角形O′CD中科根據(jù)射影定理求出OD的長(zhǎng),即可得出D的坐標(biāo).
(3)可假設(shè)存在這樣的點(diǎn)E、F,設(shè)以線(xiàn)段EF為直徑的圓的半徑為|r|,那么可用半徑|r|表示出E,F(xiàn)兩點(diǎn)的坐標(biāo),然后根據(jù)E,F(xiàn)在拋物線(xiàn)上,將E,F(xiàn)的坐標(biāo)代入拋物線(xiàn)的解析式中,可得出關(guān)于|r|的方程,如果方程無(wú)解則說(shuō)明不存在這樣的E,F(xiàn)點(diǎn),如果方程有解,可用得出的r的值求出E,F(xiàn)兩點(diǎn)的坐標(biāo).
解答:解:(1)令二次函數(shù)y=ax2+bx+c,
,
,
∴過(guò)A,B,C三點(diǎn)的拋物線(xiàn)的解析式為y=-x2-x+2.

(2)以AB為直徑的圓的圓心坐標(biāo)為O′(-,0),
∴O′C=,
OO′=;
∵CD為⊙O′切線(xiàn)
∴O′C⊥CD,
∴∠O′CO+∠OCD=90°,∠CO'O+∠O'CO=90°,
∴∠CO'O=∠DCO,
∴△O'CO∽△CDO,
=,即=,
∴OD=,
∴D坐標(biāo)為(,0).

(3)存在,
拋物線(xiàn)對(duì)稱(chēng)軸為x=-,
設(shè)滿(mǎn)足條件的圓的半徑為r,則E的坐標(biāo)為(-+r,|r|)或F(--r,r),
而E點(diǎn)在拋物線(xiàn)y=-x2-x+2上,
∴r=-(-+r)2-(-+r)+2;
∴r1=-1+,r2=-1-(舍去);
故以EF為直徑的圓,恰好與x軸相切,該圓的半徑為
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似、切線(xiàn)的性質(zhì)等重要知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•張家界)在建立平面直角坐標(biāo)系的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)P的坐標(biāo)為(-1,0),請(qǐng)按要求畫(huà)圖與作答.
(1)把△ABC繞點(diǎn)P旋轉(zhuǎn)180°得△A′B′C′.
(2)把△ABC向右平移7個(gè)單位得△A″B″C″.
(3)△A′B′C′與△A″B″C″是否成中心對(duì)稱(chēng),若是,找出對(duì)稱(chēng)中心P′,并寫(xiě)出其坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:解答題

(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線(xiàn)交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線(xiàn)的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線(xiàn)交拋物線(xiàn)于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線(xiàn)段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市石室錦城外國(guó)語(yǔ)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2009•張家界)將函數(shù)y=-3x+3的圖象向上平移2個(gè)單位,得到函數(shù)    的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省張家界市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線(xiàn)交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線(xiàn)的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線(xiàn)交拋物線(xiàn)于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線(xiàn)段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案