【題目】觀察與思考:閱讀下列材料,并解決后面的問題.
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖1),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以=,即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.
(1)如圖2,△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=_____;AC=_____;
(2)如圖3,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖3),求此時貨輪距燈塔A的距離AB.
【答案】(1)60°,;(2)貨輪距燈塔的距離AB=15海里.
【解析】
(1)利用題目總結(jié)的正弦定理,將有關(guān)數(shù)據(jù)代入求解即可;
(2)在△ABC中,分別求得BC的長和三個內(nèi)角的度數(shù),利用題目中總結(jié)的正弦定理求AC的長即可.
(1)∠A=60°,AC=;
(2)如圖,依題意:BC=60×0.5=30(海里)
∵CD∥BE,
∴∠DCB+∠CBE=180°
∵∠DCB=30°,
∴∠CBE=150°
∵∠ABE=75°.
∴∠ABC=75°,
∴∠A=45°,
在△ABC中,,即
解之得:AB=15.
答:貨輪距燈塔的距離AB=15海里.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標(biāo)為( 。
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:①A,B兩城相距300千米;②乙車比甲車晚出發(fā)1小時,卻早到1.5小時;③乙車出發(fā)后2.5小時追上甲車;④當(dāng)甲、乙兩車相距40千米時,t=或t=,其中正確的結(jié)論有( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D在反比例函數(shù)的圖象上,過點D作x軸的平行線交y軸于點B(0,2),過點A(,0)的直線y=kx+b與y軸于點C,且BD=2OC,tan∠OAC=.
(1)求反比例函數(shù)的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;
(3)點E為x軸上點A左側(cè)的一點,且AE=BD,連接BE交直線CA于點M,求tan∠BMC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知公路l上A、B兩點之間的距離為50m,小明要測量點C與河對岸邊公路l的距離,測得∠ACB=∠CAB=30°.點C到公路l的距離為( 。
A. 25m B. m C. 25m D. (25+25)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,AB=BD,點B、C、D、G四個點在同一個圓⊙O上,連接BG 并延長交AD于點F,連接DG并延長交AB于點E,BD與CG交于點H,連接FH,下列結(jié) 論:①AE=DF;②FH∥AB;③△DGH∽△BGE;④當(dāng)CG為⊙O的直徑時,DF=AF.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AD邊上的一個動點,將四邊形BCDE沿直線BE折疊,得到四邊形BC′D′E,連接AC′,AD′.
(1)若直線DA交BC′于點F,求證:EF=BF;
(2)當(dāng)AE=時,求證:△AC′D′是等腰三角形;
(3)在點E的運動過程中,求△AC′D′面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)的圖象過點(-1,0),其對稱軸為,下列結(jié)論:①;②;③;④此二次函數(shù)的最大值是,其中結(jié)論正確的是( )
A. ①②B. ②③C. ②④D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com