【題目】如圖,四邊形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.過(guò)點(diǎn)C作CE⊥AB于E,交對(duì)角線BD于F,點(diǎn)G為BC中點(diǎn),連接EG、AF.
(1)求EG的長(zhǎng);
(2)求證:CF=AB+AF.
【答案】(1)EG=(2) 見(jiàn)解析
【解析】(1)根據(jù)BD⊥CD,∠DCB=45°,得到∠DBC=∠DCB,求出BD=CD=2,根據(jù)勾股定理求出BC=2,根據(jù)CE⊥BE,點(diǎn)G為BC的中點(diǎn)即可求出EG;
(2)在線段CF上截取CH=BA,連接DH,根據(jù)BD⊥CD,BE⊥CD,推出∠EBF=∠DCF,證出△ABD≌△HCD,得到CD=BD,∠ADB=∠HDC,根據(jù)AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠HDB,證出△ADF≌△HDF,即可得到答案.
(1):∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC=,
∵CE⊥BE,
∠BEC=90°,
∵點(diǎn)G為BC的中點(diǎn),
∴EG=BC=.
答:EG的長(zhǎng)是.
(2)證明:在線段CF上截取CH=BA,連接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADF=∠HDC,
∵AD∥BC,
∴∠ADF=∠DBC=45°,
∴∠HDC=45°,∴∠HDF=∠BDC-∠HDC=45°,
∴∠ADF=∠HDF,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,
(1)試說(shuō)明CD是△CBE的角平分線;
(2)和∠B相等的角是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)江中下游地區(qū)特大旱情發(fā)生后,全國(guó)人民抗旱救災(zāi),眾志成城.市政府籌集了抗旱必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車(chē)型供選擇,每輛車(chē)的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車(chē)均滿載)
車(chē)型 | 甲 | 乙 | 丙 |
汽車(chē)運(yùn)載量(噸/輛) | 5 | 8 | 10 |
汽車(chē)運(yùn)費(fèi)(元/輛) | 400 | 500 | 600 |
(1)若全部物資都用甲、乙兩種車(chē)型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車(chē)型各幾輛?
(2)為了節(jié)省運(yùn)費(fèi),溫州市政府打算用甲、乙、丙三種車(chē)型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車(chē)型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(m為常數(shù))
(1)求證:不論m為何值,該方程總有實(shí)數(shù)根;
(2)若該方程有一個(gè)根是,求m的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線(>0)經(jīng)過(guò)四邊形OABC的頂點(diǎn)A、C,∠ABC=90°,OC平分OA與軸正半軸的夾角,AB∥軸,將△ABC沿AC翻折后得△,點(diǎn)落在OA上,則四邊形OABC的面積是2,若BC=2,直線與△ABC有交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】杰瑞公司成立之初投資1500萬(wàn)元購(gòu)買(mǎi)新生產(chǎn)線生產(chǎn)新產(chǎn)品,此外,生產(chǎn)每件該產(chǎn)品還需要成本60元.按規(guī)定,該產(chǎn)品售價(jià)不得低于100元/件且不得超過(guò)180元/件,該產(chǎn)品銷(xiāo)售量y(萬(wàn)件)與產(chǎn)品售價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(2)第一年公司是盈利還是虧損?求出當(dāng)盈利最大或者虧損最小時(shí)的產(chǎn)品售價(jià);
(3)在(2)的前提下,即在第一年盈利最大或者虧損最小時(shí),第二年公司重新確定產(chǎn)品售價(jià),能否使兩年共盈利達(dá)1340萬(wàn)元,若能,求出第二年產(chǎn)品售價(jià);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,0是坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(2, 0),點(diǎn)B坐標(biāo)為(0, b) (b>0), 點(diǎn)P是直線AB上位于第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PC垂直于x軸于點(diǎn)C,記點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為Q.
(1)當(dāng)b=1時(shí):①求直線AB相應(yīng)的函數(shù)表達(dá)式:②若,求點(diǎn)P的坐標(biāo):
(2)設(shè)點(diǎn)P的橫坐標(biāo)為a,是否同時(shí)存在a、b,使得是等腰直角三角形?若存在,求出所有滿足條件的a、b的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】墊球是排球運(yùn)動(dòng)的一項(xiàng)重要技術(shù).下列圖表中的數(shù)據(jù)分別是甲、乙、內(nèi)三個(gè)運(yùn)動(dòng)員十次墊球測(cè)試的成績(jī),規(guī)則為每次測(cè)試連續(xù)墊球10個(gè),每墊球到位1個(gè)記1分.
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫(xiě)出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)和中位數(shù);
(2)試從平均數(shù)和方差兩個(gè)角度綜合分析,若在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰(shuí)更合適?(參考數(shù)據(jù):三人成績(jī)的方差分別為S甲2=0.8、S乙2=0.4、s丙2=0.81)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,為原點(diǎn),且、滿足:.試解答下列問(wèn)題:
(1)求數(shù)軸上線段的長(zhǎng)度;
(2)若點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則經(jīng)過(guò)秒后點(diǎn)表示的數(shù)為 ;(用含的代數(shù)式表示)
(3)若點(diǎn),都以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)不動(dòng),經(jīng)過(guò)秒后其中一個(gè)點(diǎn)是一條線段的中點(diǎn),求此時(shí)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com