【題目】有一 列數(shù)是7、9、3、7、6、9、11、8、 2、9、10,中位數(shù)是多少?這列數(shù)若再加入3和1000兩個數(shù),那么中位數(shù)會改變嗎?平均數(shù)又會有什么變化?
【答案】排序:2、3、6、7、7、8、9、9、9、10、11;中位數(shù)為8;排序:2、3、3、6、7、7、8、9、9、9、10、11、1000;中位數(shù)不變,平均數(shù)變大
【解析】
首先把給出的此組數(shù)據(jù)中的數(shù)按從小到大(或從大到小)的順序排列,由于數(shù)據(jù)個數(shù)是9,9是奇數(shù),所以處于中間的數(shù)就是此組數(shù)據(jù)的中位數(shù);加入兩個數(shù)后,重新排列順序,即可判定中位數(shù)和平均數(shù)的變化.
排序:2、3、6、7、7、8、9、9、9、10、11;
∴中位數(shù)為8;平均數(shù)為
加入3和1000兩個數(shù),排序:2、3、3、6、7、7、8、9、9、9、10、11、1000;中位數(shù)為8;平均數(shù)為
∴中位數(shù)不變,平均數(shù)變大.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是圓上一點,弦CD⊥AB于點E,且DC=AD.過點A作⊙O的切線,過點C作DA的平行線,兩直線交于點F,FC的延長線交AB的延長線于點G.
(1)求證:FG與⊙O相切;
(2)連接EF,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=,AD=3,點E是邊AD靠近A的三等分點,點P是BC延長線上一點,且EP⊥EB,點G是BE上任意一點,過G作GH∥BP,交EP于點H.將△EGH繞點E逆時針旋轉(zhuǎn)α(0<α<90°),得到△EMN(M、N分別是G、H的對應點).
(1)求BP的長;
(2)求的值;
(3)如圖②當α=60°時,點M恰好落在GH上,延長BM交NP于點Q,取EP的中點K,連接QK.若點G在線段EB上運動,問QK是否有最小值?若有最小值,請求出點G運動到EB的什么位置時,QK有最小值及最小值是多少,若沒有最小值,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD交于點O,已知AC=2,AB=5.
(1)求BD的長;
(2)點E為直線AD上的一個動點,連接CE,將線段EC繞點C順時針旋轉(zhuǎn)∠BCD的角度后得到對應的線段CF(即∠ECF=∠BCD),EF交CD于點P.
①當E為AD的中點時,求EF的長;
②連接AF、DF,當DF的長度最小時,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ACB中,∠C=90°,BC=3cm,AC=3cm,點P由B點出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;點Q由A點出發(fā)沿AC方向向點C勻速運動,速度為cm/s;若設運動的時間為t(s)(0<t<3),解答下列問題:
(1)如圖①,連接PC,當t為何值時△APC∽△ACB,并說明理由;
(2)如圖②,當點P,Q運動時,是否存在某一時刻t,使得點P在線段QC的垂直平分線上,請說明理由;
(3)如圖③,當點P,Q運動時,線段BC上是否存在一點G,使得四邊形PQGB為菱形?若存在,試求出BG長;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時,發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.
(1)求B點到直線CA的距離;
(2)執(zhí)法船從A到D航行了多少海里?(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點B,
點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE
的面積為3,則k的值為 ▲ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直接坐標系中,將反比例函數(shù)的圖象繞坐標原點O逆時針旋轉(zhuǎn)45°得到的曲線l,過點,的直線與曲線l相交于點C、D,則sin∠COD=___ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與x軸交于A,B兩點,與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.
(1)如圖1,點P是直線BE上方拋物線上一動點,連接PD,PF,當△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值;
(2)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內(nèi)一點,當以點A、M、N、K為頂點的四邊形是正方形時,直接寫出點N的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com