【題目】如圖:點(diǎn)C是∠AOB的邊OB上的一點(diǎn),按下列要求畫(huà)圖并回答問(wèn)題.
(1)過(guò)C點(diǎn)畫(huà)OB的垂線,交OA于點(diǎn)D;
(2)過(guò)C點(diǎn)畫(huà)OA的垂線,垂足為E;
(3)比較線段CE,OD,CD的大小(請(qǐng)直接寫(xiě)出結(jié)論);
(4)請(qǐng)寫(xiě)出第(3)小題圖中與∠AOB互余的角(不增添其它字母).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)CE<CD<OD;(4)與∠AOB互余的角是∠OCE與∠ODC
【解析】
(1)作DC⊥OB即可;
(2)作CE⊥OA即可;
(3)根據(jù)垂線段最短及直角三角形的斜邊大于任一直角邊即可得出結(jié)論;
(4)根據(jù)兩角互余的定義即可得出結(jié)論.
解:(1)、(2)如圖所示;
(3)∵CE⊥OA,
∴CE<CD.
∵△OCD中OD是斜邊,CD是直角邊,
∴CD<OD,
∴CE<CD<OD;
(4)∵CE⊥OA,
∴∠AOB+∠OCE=90°.
∵CD⊥OB,
∴∠AOB+∠ODC=90°,
∴與∠AOB互余的角是∠OCE與∠ODC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們來(lái)定義下面兩種數(shù):
(一)平方和數(shù):若一個(gè)三位數(shù)或者三位以上的整數(shù)分拆成最左邊、中間、最右邊三個(gè)數(shù)后滿(mǎn)足:中間數(shù)=(最左邊數(shù))2+(最右邊數(shù))2,我們就稱(chēng)該整數(shù)為平方和數(shù).
例如:對(duì)于整數(shù)251.它中間的數(shù)字是5,最左邊數(shù)是2,最右邊數(shù)是1.
是一個(gè)平方和數(shù)
又例如:對(duì)于整數(shù)3254,它的中間數(shù)是25,最左邊數(shù)是3,最右邊數(shù)是4,
是一個(gè)平方和數(shù).當(dāng)然152和4253這兩個(gè)數(shù)也是平方和數(shù);
(二)雙倍積數(shù):若一個(gè)三位數(shù)或者三位以上的整數(shù)分拆成最左邊、中間、最右邊三個(gè)數(shù)后滿(mǎn)足:中間數(shù)=最左邊數(shù)最右邊數(shù),我們就稱(chēng)該整數(shù)為雙倍積數(shù).
例如:對(duì)于整數(shù)163,它的中間數(shù)是6,最左邊數(shù)是1,最右邊數(shù)是3,
是一個(gè)雙倍積數(shù),
又例如:對(duì)于整數(shù)3305,它的中間數(shù)是30,最左邊數(shù)是3,最右邊數(shù)是5,
是一個(gè)雙倍積數(shù),當(dāng)然361和5303這兩個(gè)數(shù)也是雙倍積數(shù).
注意:在下面的問(wèn)題中,我們統(tǒng)一用字母表示一個(gè)整數(shù)分拆出來(lái)的最左邊數(shù),用字母表示該整數(shù)分拆出來(lái)的最右邊數(shù),請(qǐng)根據(jù)上述定義完成下面問(wèn)題:
(1)①若一個(gè)三位整數(shù)為平方和數(shù),且十位數(shù)為4,則該三位數(shù)為________;
②若一個(gè)三位整數(shù)為雙倍積數(shù),且十位數(shù)字為 6 ,則該三位數(shù)為_________;
③若一個(gè)整數(shù)既為平方和數(shù),又是雙倍積數(shù),則應(yīng)滿(mǎn)足的數(shù)量關(guān)系為_______;
(2)若(即這是個(gè)最左邊數(shù)為,中間數(shù)為565,最右邊數(shù)為的整數(shù),以下類(lèi)同)是一個(gè)平方和數(shù),是一個(gè)雙倍積數(shù),求的值.
(3)從所有三位整數(shù)中任選一個(gè)數(shù)為雙倍積數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BC,∠A=∠C=50°,線段AD上從左到右依次有兩點(diǎn)E、F(不與A、D重合)
(1)AB與CD是什么位置關(guān)系,并說(shuō)明理由;
(2)觀察比較∠1、∠2、∠3的大小,并說(shuō)明你的結(jié)論的正確性;
(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數(shù),判斷BE與AD是何種位置關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知任意三角形ABC,
(1)如圖1,過(guò)點(diǎn)C作DE∥AB,求證:∠DCA=∠A;
(2)如圖1,求證:三角形ABC的三個(gè)內(nèi)角(即∠A、∠B、∠ACB)之和等于180°;
(3)如圖2,求證:∠AGF=∠AEF+∠F;
(4)如圖3,AB∥CD,∠CDE=119°,GF交∠DEB的平分線EF于點(diǎn)F,∠AGF=150°,求∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】結(jié)合圖形填空:已知:如圖,.求證:.
證明:∵(已知),
又( ),
∴(等量代換),
∴(同位角相等,兩直線平行),
∴( ).
∵(已知),
∴(等量代換),
∴( ),
∴( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的運(yùn)算程序中,若開(kāi)始輸入的值為5,可發(fā)現(xiàn)第一次輸出的結(jié)果為8,第二次輸出的結(jié)果為4,…,請(qǐng)你探索第2020次輸出的結(jié)果為( )
A.2B.1C.6D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,點(diǎn)在邊上,,.給出下列三組條件(每組條件中的線段的長(zhǎng)度已知):①,;②,;③,;能使唯一確定的條件的序號(hào)為( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是一個(gè)無(wú)理數(shù)篩選器的工作流程圖.
(1)當(dāng)為16時(shí),值為 ;
(2)是否存在輸入有意義的值后,卻始終輸不出值?如果存在,寫(xiě)出所有滿(mǎn)足要求的值;如果不存在,請(qǐng)說(shuō)明理由;
(3)如果輸入值后,篩選器的屏幕顯示“該操作無(wú)法運(yùn)行”,請(qǐng)你分析輸入的值可能是什么情況;
(4)當(dāng)輸出的值是時(shí),判斷輸入的值是否唯一,如果不唯一,請(qǐng)寫(xiě)出其中的兩個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).
①畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
②將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A2BC2 , 請(qǐng)?jiān)趫D中畫(huà)出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com