【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)y=kx+5(k為常數(shù),且k≠0)的圖象交于A(﹣2,b),B兩點.
(1)求一次函數(shù)的表達式;
(2)若將直線AB向下平移m(m>0)個單位長度后與反比例函數(shù)的圖象有且只有一個公共點,求m的值.
【答案】(1);(2) m的值為1或9.
【解析】(1)先利用反比例函數(shù)解析式y=求出b=4,得到A點坐標為(-2,4),然后把A點坐標代入y=kx+5中求出k,從而得到一次函數(shù)解析式為y=x+5;
(2)由于將直線AB向下平移m(m>0)個單位長度得直線解析式為y=x+5-m,則直線y=x+5-m與反比例函數(shù)有且只有一個公共點,即方程組只有一組解,然后消去y得到關于x的一元二次方程,再根據(jù)判別式的意義得到關于m的方程,最后解方程求出m的值.
(1)把A(﹣2,b)代入,
得b=﹣ =4,
所以A點坐標為(﹣2,4),
把A(﹣2,4)代入y=kx+5,
得﹣2k+5=4,解得k=,
所以一次函數(shù)解析式為y=x+5;
(2)將直線AB向下平移m(m>0)個單位長度得直線解析式為y=x+5﹣m,
根據(jù)題意方程組只有一組解,
消去y得﹣=x+5﹣m,
整理得x2﹣(m﹣5)x+8=0,
△=(m﹣5)2﹣4××8=0,
解得m=9或m=1,
即m的值為1或9.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(點D不與點B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E.
(1)當∠BDA=110°時,∠EDC= °,∠DEC= °;點D從B向C的運動過程中,∠BDA逐漸變 (填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由.
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù),若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料:勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法.先做四個全等的直角三角形,設它們的兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形.
由圖1可以得到(a+b)2=4×ab+c2
整理,得a2+2ab+b2=2ab+c2.
所以a2+b2=c2.
如果把圖1中的四個全等的直角三角形擺成圖2所示的正方形,請你參照上述方法證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,OA=36cm,OB=12cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是兩張不同類型火車的車票:(“D×××次”表示動車,“G×××次”表示高鐵):
(1)根據(jù)車票中的信息填空:兩車行駛方向 ,出發(fā)時刻 (填“相同”或“不同”);
(2)已知該動車和高鐵的平均速度分別為200km/h,300km/h,如果兩車均按車票信息準時出發(fā),且同時到達終點,求A,B兩地之間的距離;
(3)在(2)的條件下,請求出在什么時刻兩車相距100km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市電器銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售量 | 銷售收入 | |
A型號 | B型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(1)求A、B兩種型號的電風扇的銷售價.
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇30臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能請給出采購方案.若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】高空拋物極其危險,是我們必須杜絕的行為.據(jù)研究,高空拋物下落的時間t(單位:s)和高度 h(單位:m)近似滿足公式 t=(不考慮風速的影響)
(1)從 50m 高空拋物到落地所需時間 t1 是多少 s,從 100m 高空拋物到落地所 需時間 t2 是多少 s;
(2)t2 是 t1 的多少倍?
(3)經(jīng)過 1.5s,高空拋物下落的高度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1), 點為直線上一點,過點作射線, 將一直角的直角項點放在點處,即反向延長射線,得到射線.
(1)當的位置如圖(1)所示時,使,若,求的度數(shù).
(2)當的位置如圖(2)所示時,使一邊在的內(nèi)部,且恰好平分,
問:射線的反向延長線是否平分請說明理由:注意:不能用問題中的條件
(3)當的位置如圖所示時,射線在的內(nèi)部,若.試探究與之間的數(shù)量關系,不需要證明,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C為線段AB的中點,E為直線AB上方的一點,且滿足CE=CB,連接AE,以AE為腰,A為頂角頂點作等腰Rt△ADE,連接CD,當CD最大時,∠DEC的度數(shù)為( )
A. 60° B. 75° C. 90° D. 67.5°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com