【題目】如圖,BD是矩形ABCD的一條對角線.

(1)BD的垂直平分線EF,分別交ADBC于點(diǎn)E,F,垂足為點(diǎn)O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)

(2)(1)中,連接BEDF,求證:四邊形DEBF是菱形

【答案】(1)作圖見解析;(2)證明見解析.

【解析】1)分別以BD為圓心,以大于 的長為半徑四弧交于兩點(diǎn),過兩點(diǎn)作直線即可得到線段BD的垂直平分線;(2)利用垂直平分線證得DEO≌△BFO即可證得EO=FO,進(jìn)而利用菱形的判定方法得出結(jié)論.

本題解析: (1)如圖所示:EF即為所求;

(2)證明:如圖所示:∵四邊形ABCD為矩形,∴AD∥BC,∴∠ADB=∠CBD,

∵EF垂直平分線段BD,∴BO=DO,

在△DEO和三角形BFO中,

∴△DEO≌△BFO(ASA),∴EO=FO,

∴四邊形DEBF是平行四邊形,又∵EF⊥BD,

∴四邊形DEBF是菱形。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)是國際上普遍采用的定量評價空氣質(zhì)量好壞的重要指標(biāo),空氣質(zhì)量指數(shù)不超過50則空氣質(zhì)量評估為優(yōu).下表記錄了我市11月某一周7天的空氣質(zhì)量指數(shù)變化情況.規(guī)定:空氣質(zhì)量指數(shù)50記為零,空氣質(zhì)量指數(shù)超過50記為正,空氣質(zhì)量指數(shù)低于50記為負(fù).

星期一

星期二

星期三

星期四

星期五

星期六

星期日

+18

4

1

18

10

+28

+29

解答以下問題:

1)根據(jù)表格可知,星期四空氣質(zhì)量指數(shù)為   ,星期六比星期二空氣質(zhì)量指數(shù)高   ;

2)求這一周7天的平均空氣質(zhì)量指數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線AC上的一點(diǎn),點(diǎn)EBC的延長線上,且PE=PBPEDC交于點(diǎn)O

(基礎(chǔ)探究)

1)求證:PD=PE

2)求證:∠DPE=90°

3)(應(yīng)用拓展)把正方形ABCD改為菱形,其他條件不變(如圖),若PE=3,則PD=________;

∠ABC=62°,則∠DPE=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADABC的高,ADBC,以AB為底邊作等腰RtABEEFAD,交ACF,連ED,EC,有以下結(jié)論:①ADE≌△BCE;②CEAB;③BD2EF;④SBDESACE,其中正確的是( 。

A.①②③B.②④C.①③D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】騰飛中學(xué)在教學(xué)樓前新建了一座騰飛雕塑(如圖①.為了測量雕塑的高度,小明在二樓找到一點(diǎn)C,利用三角板測得雕塑頂端A點(diǎn)的仰角為,底部B點(diǎn)的俯角為,小華在五樓找到一點(diǎn)D,利用三角板測得A點(diǎn)的俯角為(如圖②.若已知CD10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次大型活動,組委會啟用無人機(jī)航拍活動過程,在操控?zé)o人機(jī)時應(yīng)根據(jù)現(xiàn)場狀況調(diào)節(jié)高度,已知無人機(jī)在上升和下降過程中速度相同,設(shè)無人機(jī)的飛行高度h(米)與操控?zé)o人機(jī)的時間t(分鐘)之間的關(guān)系如圖中的實(shí)線所示,根據(jù)圖象回答下列問題:

1)圖中的自變量是______,因變量是______

2)無人機(jī)在75米高的上空停留的時間是______分鐘;

3)在上升或下降過程中,無人機(jī)的速度______為米/分;

4)圖中a表示的數(shù)是______b表示的數(shù)是______;

5)圖中點(diǎn)A表示______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(4,0),點(diǎn)D(2,4),與y軸交于點(diǎn)C,作直線BC,連接AC,CD.

(1)求拋物線的函數(shù)表達(dá)式;

(2)E是拋物線上的點(diǎn),求滿足∠ECD=∠ACO的點(diǎn)E的坐標(biāo);

(3)點(diǎn)M在y軸上且位于點(diǎn)C上方,點(diǎn)N在直線BC上,點(diǎn)P為第一象限內(nèi)拋物線上一點(diǎn),若以點(diǎn)C,M,N,P為頂點(diǎn)的四邊形是菱形,求菱形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,橫坐標(biāo)為a的點(diǎn) A在反比例函數(shù)的圖象上,點(diǎn)與點(diǎn)關(guān)于點(diǎn)對稱,一次函數(shù)的圖象經(jīng)過點(diǎn)

1)設(shè),點(diǎn)4,2)在函數(shù) , 的圖像上.

①分別求函數(shù) ,的表達(dá)式;

②直接寫出使 成立的的范圍;

2)如圖①,設(shè)函數(shù) ,的圖像相交于點(diǎn),點(diǎn)的橫坐標(biāo)為的面積為16,求 的值;

3)設(shè),如圖②,過點(diǎn) 軸,與函數(shù)的圖像相交于點(diǎn),以為一邊向右側(cè)作正方形,試說明函數(shù)的圖像與線段的交點(diǎn)一定在函數(shù)的圖像上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若順次連接四邊形ABCD各邊中點(diǎn)所得四邊形是矩形,則四邊形ABCD必然是( )

A.菱形

B.對角線相互垂直的四邊形

C.正方形

D.對角線相等的四邊形

查看答案和解析>>

同步練習(xí)冊答案