(1)如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在線段BC上,且AE=CF.求證:∠AEB=∠CFB.
(2)如圖,PA為⊙O的切線,A為切點,⊙O的割線PBC過點O與⊙O分別交于B、C, PA=8cm,PB=4cm,求⊙O的半徑.
(1)由AB=CB,AE=CF根據(jù)“HL”可證得Rt△ABE≌Rt△CBF,問題得證;(2)6cm
解析試題分析:(1)由AB=CB,AE=CF根據(jù)“HL”可證得Rt△ABE≌Rt△CBF,問題得證;
(2)設⊙的半徑為r,連接OA,則OA⊥AP,在Rt△OAP中,根據(jù)勾股定理即可列方程求解.
(1)在Rt△ABE和Rt△CBF中,
∵
∴Rt△ABE≌Rt△CBF
∴∠AEB=∠CFB;
(2)設⊙的半徑為r,連接OA,則OA⊥AP
在Rt△OAP中,
即,解得=6
∴⊙O的半徑為6cm.
考點:全等三角形的判定和性質(zhì),切線的性質(zhì),勾股定理
點評:全等三角形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考常見題,一般難度不大,需熟練掌握.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com