【題目】下面的圖形是由邊長為l的正方形按照某種規(guī)律排列而組成的.
(1)觀察圖形,填寫下表:
(2)推測第n個圖形中,正方形的個數(shù)為 ,周長為 (都用含n的代數(shù)式表示).
(3)這些圖形中,任意一個圖形的周長y與它所含正方形個數(shù)x之間的關(guān)系可表示為 .
【答案】(1)13,28,18,38;(2)5n+3,10n+8;(3)y=2x+2
【解析】
(1)先數(shù)出圖形中正方形的個數(shù),再根據(jù)正方形的個數(shù)算出圖形的周長;
(2)根據(jù)題(1)中的表格結(jié)果,歸納出規(guī)律,再以此類推至第n個圖形中的情況;
(3)根據(jù)題(2)中的結(jié)論,即可得出y與x之間的關(guān)系.
(1)觀察圖形,可數(shù)出第2個圖形中正方形的個數(shù)為13個,周長為28
第3個圖形中正方形的個數(shù)為18,周長為38;
(2)觀察題(1)的表格可發(fā)現(xiàn):
第1個圖形中,正方形有8個,即,周長是18,即
第2個圖形中,正方形有13個,即,周長是28,即
第3個圖形中,正方形有18個,即,周長是38,即
由此推測第n個圖形中,正方形的個數(shù)為:,周長為:;
(3)根據(jù)題(2)可知,第n個圖形中,
整理得:
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求解不等式(組)
(1)求不等式的非負(fù)整數(shù)解.
(2)解不等式組,并把它的解集在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B,M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=4,cosC=時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:
如:解方程x(x+4)=6.
解:原方程可變形,得:[(x+2)﹣2][(x+2)+2]=6.
(x+2)2﹣22=6,
(x+2)2=6+22,
(x+2)2=10.
直接開平方并整理,得.x1=﹣2+,x2=﹣2﹣.
我們稱小明這種解法為“平均數(shù)法”.
(1)下面是小明用“平均數(shù)法”解方程(x+3)(x+7)=5時寫的解題過程.
解:原方程可變形,得:[(x+a)﹣b][(x+a)+b]=5.
(x+a)2﹣b2=5,
(x+a)2=5+b2.
直接開平方并整理,得.x1=c,x2=d.
上述過程中的a、b、c、d表示的數(shù)分別為 , , , .
(2)請用“平均數(shù)法”解方程:(x﹣5)(x+3)=6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織275名師生郊游,計劃租用甲、乙兩種客車共7輛,已知甲客車載客量是30人,乙客車載客量是45人,其中,每輛乙種客車租金比甲種客車多100元,5輛甲種客車和2輛乙種客車租金共需3000元.
(1)租用一輛甲種客車、一輛乙種客車的租金各多少元?
(2)設(shè)租用甲種客車輛,總租車費為元,求與的函數(shù)關(guān)系式;在保證275名師生都有座位的前提下,求當(dāng)租用甲種客車多少輛時,總租車費最少,并求出這個最少費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,正比例函數(shù)與一次函數(shù)的圖象相交于點,過點作軸的垂線,分別交正比例函數(shù)的圖像于點B,交一次函數(shù)的圖象于點C,連接OC.
(1)求這兩個函數(shù)解析式.
(2)求的面積.
(3)在坐標(biāo)軸上存在點,使是以為腰的等腰三角形,請直接寫出點的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用火柴按下列方式擺出圖形:
(1)第個圖形需要多少根火柴?
(2)按這樣擺下去,第個圖形需要多少根火柴?
(3)用根火柴能擺出第個圖形嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當(dāng)O為多少度時,CD平分OCF,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com