【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂直平分線交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:∠FAD=∠FDA;
(2)若∠B=50°,求∠CAF的度數(shù).
【答案】(1)見解析;(2)∠CAF=50°.
【解析】
(1)根據(jù)EF垂直平分AD,則可得AF=DF,根據(jù)等腰三角形的性質(zhì)可得結(jié)論;
(2)由AD是∠BAC的平分線,可得∠BAD=∠DAC.根據(jù)∠FDA=∠BAD+∠B,∠FAD=∠DAC+∠CAF,可證∠B=∠CAF,從而可求出結(jié)論.
(1)證明:∵EF是AD的垂直平分線,
∴AF=DF.
∴∠FAD=∠FDA.
(2)∵AD平分∠BAC,
∴∠BAD=∠DAC.
∵∠FDA=∠BAD+∠B,∠FAD=∠DAC+∠CAF,
由(1)知∠FAD=∠FDA,
∴∠B=∠CAF.
∵∠B=50°,
∴∠CAF=50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=30°,其平分線是OD,自O點(diǎn)引射線OC,若∠AOC:∠COB=2:3,則∠COD=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23日是“世界讀書日”,學(xué)校開展“讓書香溢滿校園”讀書活動(dòng),以提升青少年的閱讀興趣,九年級(jí)(1)班數(shù)學(xué)活動(dòng)小組對(duì)本年級(jí)600名學(xué)生每天閱讀時(shí)間進(jìn)行了統(tǒng)計(jì),根據(jù)所得數(shù)據(jù)繪制了兩幅不完整統(tǒng)計(jì)圖(每組包括最小值不包括最大值).九年級(jí)(1)班每天閱讀時(shí)間在0.5小時(shí)以內(nèi)的學(xué)生占全班人數(shù)的8%.根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)九年級(jí)(1)班有 名學(xué)生;
(2)補(bǔ)全直方圖;
(3)除九年級(jí)(1)班外,九年級(jí)其他班級(jí)每天閱讀時(shí)間在1~1.5小時(shí)的學(xué)生有165人,請(qǐng)你補(bǔ)全扇形統(tǒng)計(jì)圖;
(4)求該年級(jí)每天閱讀時(shí)間不少于1小時(shí)的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=30°,∠B=60°,AB⊥AC.
(1)∠DAB+∠B等于多少度?(2)AD與BC平行嗎?AB與CD平行嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)、、,請(qǐng)回答如下問題:
(1)在坐標(biāo)系內(nèi)描出點(diǎn)的位置:
(2)求出以三點(diǎn)為頂點(diǎn)的三角形的面積;
(3)在軸上是否存在點(diǎn),使以三點(diǎn)為頂點(diǎn)的三角形的面積為10,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】7張如圖1的長(zhǎng)為a,寬為b(a>b)的小長(zhǎng)方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A.a=bB.a=3bC.a=bD.a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,直線 MN 與直線 AB,CD 分別交于點(diǎn) E,F,∠1 與∠2 互補(bǔ).
(1)試判斷直線 AB 與直線 CD 的位置關(guān)系,并說明理由;
(2)如圖 2,∠BEF 與∠EFD 的角平分線交于點(diǎn) P,EP 與 CD 交于點(diǎn) G,點(diǎn) H 是 MN 上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖 3,在(2)的條件下,連結(jié) PH,在 GH 上取一點(diǎn) K,使得∠PKG=2∠HPK,過點(diǎn) P 作 PQ 平分∠EPK 交 EF 于點(diǎn) Q,問∠HPQ 的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.(溫馨提示:三角形的三個(gè)內(nèi)角和為 180°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點(diǎn)E、F,CE=2,連接CF,以下結(jié)論:①△ABF≌△CBF;②點(diǎn)E到AB的距離是2;③tan∠DCF= ;④△ABF的面積為.其中一定成立的有幾個(gè)( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=AC=5,AB=8,CD為AB邊的高,點(diǎn)A在x軸上,點(diǎn)B在y軸上,點(diǎn)C在第一象限,若A從原點(diǎn)出發(fā),沿x軸向右以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),則點(diǎn)B隨之沿y軸下滑,并帶動(dòng)△ABC在平面內(nèi)滑動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)B到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng)
(1)連接OC,線段OC的長(zhǎng)隨t的變化而變化,當(dāng)OC最大時(shí),t=____;
(2)當(dāng)△ABC的邊與坐標(biāo)軸平行時(shí),t=____。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com