【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.∠AOC=∠COB,則∠BOF=_____°.
【答案】30.
【解析】
根據(jù)對頂角相等求得∠BOD的度數(shù),然后根據(jù)角的平分線的定義求得∠EOD的度數(shù),則∠COE即可求得,再根據(jù)角平分線的定義求得∠EOF,最后根據(jù)∠BOF=∠EOF﹣∠BOE求解.
解:∵∠AOC=∠COB,∠AOB=180°,
∴∠AOC=180°×=80°,
∴∠BOD=∠AOC=80°,
又∵OE平分∠BOD,
∴∠DOE=∠BOD=×80°=40°.
∴∠COE=180°﹣∠DOE=180°﹣40°=140°,
∵OF平分∠COE,
∴∠EOF=∠COE=×140°=70°,
∴∠BOF=∠EOF﹣∠BOE=70°﹣40°=30°.
故答案是:30.
科目:初中數(shù)學 來源: 題型:
【題目】某中學初三(1)班共有40名同學,在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:
跳繩數(shù)/個 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 數(shù) | 1 | 2 | 8 | 11 | 5 |
將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;
(2)這個班同學這次跳繩成績的眾數(shù)是個,中位數(shù)是個;
(3)若跳滿90個可得滿分,學校初三年級共有720人,試估計該中學初三年級還有多少人跳繩不能得滿分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點為坐標原點,點分別在軸正半軸和軸正半軸上,且,點從原點出發(fā)以每秒個單位長度的速度沿x軸正半軸方向運動.
(1)求點的坐標.
(2)連接設(shè)三角形的面積為,點的運動時間為,請用含的式子表示并直接寫出的取值范圍.
(3)當點在上運動時,將線段沿軸正方向平移,使點與點重合,點的對應(yīng)點為點,連接,將線段沿軸正方向平移,使點與點重合,點的對應(yīng)點為點,取的中點是否存在的值,使三角形的面積等于三角形的面積?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小明同學化簡代數(shù)式a+2+ 的過程,請仔細閱讀并解答所提出的問題. a+2+ =2+a+ …第一步
=(2+a)(2﹣a)+a2…第二步
=2﹣a2+a2…第三步
=2…第四步
(1)小明的解法從第步開始出現(xiàn)錯誤,正確的化簡結(jié)果是;
(2)原代數(shù)式的值能等于2嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面內(nèi)有∠AOB=60°,∠AOC=40°,OD是∠AOB的平分線,OE是∠AOC的平分線,求∠DOE的度數(shù).(請作圖解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張.
(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BN是等腰Rt△ABC的外角∠CBM內(nèi)部的一條射線,∠ABC=90°,AB=CB,點C關(guān)于BN的對稱點為D,連接AD,BD,CD,其中CD,AD分別交射線BN于點E,P.
(1)依題意補全圖形;
(2)若∠CBN=,求∠BDA的大。ㄓ煤的式子表示);
(3)用等式表示線段PB,PA與PE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com