函數(shù)()的圖象與a的符號有關(guān)的是

A.頂點(diǎn)坐標(biāo)   B.開口方向   C.開口大小  D.對稱軸

 

答案:B
提示:

二次函數(shù)系數(shù)與圖象的關(guān)系。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+bx+c的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),直線y=kx+3與該二次函數(shù)的圖象交于D、B兩點(diǎn),其中點(diǎn)D在y軸上,點(diǎn)B的坐標(biāo)為(3,0).
(1)求k的值和這個(gè)二次函數(shù)的解析式.
(2)設(shè)拋物線的頂點(diǎn)為C,點(diǎn)F為線段DB上一點(diǎn),且使得∠DCF=∠ODB,求出此時(shí)點(diǎn)F的坐標(biāo).
(3)在(2)的條件下,若點(diǎn)P為直線DB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E.問:是否存在這樣的點(diǎn)P,使得以點(diǎn)P、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-,b),過點(diǎn)A作AB⊥x軸于B,△AOB的面積為。

(1);
(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,且與軸交于M,求AO∶AM;
(3)若反比例函數(shù)的圖象與一次函數(shù)的圖象的另一個(gè)交點(diǎn)為C,求C的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山東省泰安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,四邊形ABCD為正方形.點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,-3),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,一次函數(shù)y=ax+b的圖象經(jīng)過點(diǎn)C,一次函數(shù)y=ax+b的圖象經(jīng)過點(diǎn)A,
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省金華市義烏市望道中學(xué)中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸相交于點(diǎn)C.連接AC,BC,A(-3,0),C(0,),且當(dāng)x=-4和x=2時(shí)二次函數(shù)的函數(shù)值y相等.
(1)求拋物線的解析式;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
①當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
②拋物線的對稱軸上是否存在點(diǎn)Q,使得以B、N、Q為頂點(diǎn)的三角形與△A0C相似?如果存在,請直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.
③當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).

(1)求此二次函數(shù)的表達(dá)式;

(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

(3)在(2)的基礎(chǔ)上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請說明理由.

 


查看答案和解析>>

同步練習(xí)冊答案