如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
【考點(diǎn)】全等三角形的判定與性質(zhì);等腰三角形的性質(zhì).
【專題】證明題.
【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;
(2)由全等三角形的性質(zhì)得AF=BC,由等腰三角形的性質(zhì)“三線合一”得BC=2CD,等量代換得出結(jié)論.
【解答】證明:(1)∵AD⊥BC,CE⊥AB,
∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,
∴∠CFD=∠B,
∵∠CFD=∠AFE,
∴∠AFE=∠B
在△AEF與△CEB中,
,
∴△AEF≌△CEB(AAS);
(2)∵AB=AC,AD⊥BC,
∴BC=2CD,
∵△AEF≌△CEB,
∴AF=BC,
∴AF=2CD.
【點(diǎn)評(píng)】本題主要考查了全等三角形性質(zhì)與判定,等腰三角形的性質(zhì),運(yùn)用等腰三角形的性質(zhì)是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一條船在海面上自西向東沿直線航行,在A處測(cè)得航標(biāo)C在北偏東60°方向上,前進(jìn)100米到達(dá)B處,又測(cè)得航標(biāo)C在北偏東45°方向上.
(1)請(qǐng)根據(jù)以上描述,畫(huà)出圖形.
(2)已知以航標(biāo)C為圓心,120米為半徑的圓形區(qū)域內(nèi)有淺灘,若這條船繼續(xù)前進(jìn),是否有被淺灘阻礙的危險(xiǎn)?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在反比例函數(shù)y=中,當(dāng)x>0時(shí),y隨x的增大而減小,則二次函數(shù)y=ax2﹣ax的圖象大致是下圖中的( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某蔬菜經(jīng)銷(xiāo)商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時(shí),每千克批發(fā)價(jià)是5元;若超過(guò)60千克時(shí),批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫(xiě)如表:
蔬菜的批發(fā)量(千克) … 25 60 75 90 …
所付的金額(元) … 125 300 …
(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷(xiāo)商銷(xiāo)售該種蔬菜的日銷(xiāo)售量y(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;
(3)若該蔬菜經(jīng)銷(xiāo)商每日銷(xiāo)售此種蔬菜不低于75千克,且當(dāng)日零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷(xiāo)商銷(xiāo)售此種蔬菜的當(dāng)日利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知點(diǎn)A(0,1),B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸的正半軸于點(diǎn)C,則∠BAC等于 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
以▱ABCD的四條邊為邊,在其形外分別作正方形,如圖,連接EF、GH、IJ、KL.若▱ABCD的面積為5,則圖中陰影部分四個(gè)三角形的面積和為( 。
A.5 B.10 C.15 D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知是關(guān)于x的一次函數(shù),則m ,n .
直線與x軸的交點(diǎn)坐標(biāo)是__________,與y軸的交點(diǎn)坐標(biāo)是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com