【題目】如圖,△ABC和△DCE都是直角三角形,其中一個(gè)三角形是由另一個(gè)三角形旋轉(zhuǎn)得到的,下列敘述中錯(cuò)誤的是(
A.旋轉(zhuǎn)中心是點(diǎn)C
B.順時(shí)針旋轉(zhuǎn)角是90°
C.旋轉(zhuǎn)中心是點(diǎn)B,旋轉(zhuǎn)角是∠ABC
D.既可以是逆時(shí)針旋轉(zhuǎn)又可以是順時(shí)針旋轉(zhuǎn)

【答案】C
【解析】解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,△ABC通過旋轉(zhuǎn)得到△DCE,它的旋轉(zhuǎn)中心是點(diǎn)C,A正確,C錯(cuò)誤; AC⊥CD即順時(shí)針旋轉(zhuǎn)的旋轉(zhuǎn)角為90°,B正確;
兩個(gè)三角形,既可看成是順時(shí)針旋轉(zhuǎn)又可看成是逆時(shí)針旋轉(zhuǎn),只是旋轉(zhuǎn)角不同,D正確.
故選C.
【考點(diǎn)精析】關(guān)于本題考查的旋轉(zhuǎn)的性質(zhì),需要了解①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠車間共有10名工人,調(diào)查每個(gè)工人的日均生產(chǎn)能力,獲得數(shù)據(jù)制成如下統(tǒng)計(jì)圖.

(1)求這10名工人的日均生產(chǎn)件數(shù)的平均數(shù)、眾數(shù)、中位數(shù);

(2)若要使占60%的工人都能完成任務(wù),應(yīng)選什么統(tǒng)計(jì)量(平均數(shù)、中位數(shù)、眾數(shù))做日生產(chǎn)件數(shù)的定額?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如表:

x

﹣2

﹣1

0

1

2

3

y

0

4

6

6

4

0


(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)直接寫出當(dāng)y<0時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,為美化校園環(huán)境,某校計(jì)劃在一塊長為100米,寬為60米的長方形空地上修建一個(gè)長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米﹒

(1)用含a的式子表示花圃的面積;

(2)如果通道所占面積是整個(gè)長方形空地面積的,求出此時(shí)通道的寬;

(3)已知某園林公司修建通道的單價(jià)是50/2,修建花圃的造價(jià)y(元)與花圃的修建面積Sm2)之間的函數(shù)關(guān)系如圖2所示,并且通道寬a(米)的值能使關(guān)于x的方程x2-ax+25a-150有兩個(gè)相等的實(shí)根,并要求修建的通道的寬度不少于5米且不超過12米,如果學(xué)校決定由該公司承建此項(xiàng)目,請求出修建的通道和花圃的造價(jià)和為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,A FCE,且交BC于點(diǎn)F

(1)求證:ABF≌△CDE;

(2)如圖,若∠1=65°,求∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOC=,ON是銳角COD的角平分線,OMAOC的角平分線,那么,MON= ( )

A. COD+ B.

C. AOD D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣ x2+bx+c與x軸分別交于點(diǎn)A(﹣2,0)、B(4,0),與y軸交于點(diǎn)C.
(1)求拋物線解析式;
(2)求△CAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知在ABC,ABAC,BE,CF都是ABC的高線PBE上一點(diǎn),BPAC,QCF延長線上一點(diǎn)CQAB,連結(jié)AP,AQQP.求證:

(1)AQPA.

(2)APAQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過原點(diǎn)O,且與x軸、y軸分別相交于A(﹣8,0),B(0,﹣6)兩點(diǎn).

(1)求出直線AB的函數(shù)解析式;
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點(diǎn)M,頂點(diǎn)C在圓M上,開口向下,且經(jīng)過點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得SPDE= SABC?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案