如圖,一次函數(shù)的圖象與x軸、y軸分別相交于點A、B.P是射線BO上的一個動點(點P不與點B重合),過點P作PC⊥AB,垂足為C,在射線CA上截取CD=CP,連接PD.設(shè)BP=t.

(1)t為何值時,點D恰好與點A重合?
(2)設(shè)△PCD與△AOB重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出t的取值范圍.
解:(1)在一次函數(shù)解析式中,令x=0,得y=4;令y=0,得x=3,
∴A(3,0),B(0,4)。
在Rt△AOB中,OA=3,OB=4,由勾股定理得:AB=5。
在Rt△BCP中,CP=PB•sin∠ABO=t,BC=PB•cos∠ABO=t,
∴CD=CP=t。
若點D恰好與點A重合,則BC+CD=AB,即t+t=5,解得:t=。
∴當(dāng)t=時,點D恰好與點A重合。
(2)當(dāng)點P與點O重合時,t=4;
當(dāng)點C與點A重合時,由BC=BA,即t=5,得t=。
∴點P在射線BO上運動的過程中,分為四個階段:
當(dāng)0<t≤時,如題圖所示,
此時S=SPCD=CP•CD=t•t=t2。
②當(dāng)<t≤4時,如答圖1所示,設(shè)PC與x軸交于點E,

BD=BC+CD=t+t=t,
過點D作DN⊥y軸于點N,
則ND=BD•sin∠ABO=t•=t
BN=BD•cos∠ABO=t•=t。
∴PN=BN﹣BP=t﹣t=t,ON=BN﹣OB=t﹣4。
∵ND∥x軸,∴△OEP∽△NDP。
,即,得:OE=28﹣7t.。
∴AE=OA﹣OE=3﹣(28﹣7t)=7t﹣25。
。
③當(dāng)4<t≤時,如答圖2所示,設(shè)PC與x軸交于點E.

AC=AB﹣BC=5﹣t,
,
∴CE=AC•tan∠OAB=(5﹣t)×= t。

。
④當(dāng)t>時,無重合部分,故S=0。
綜上所述,S與t的函數(shù)關(guān)系式為:
。

試題分析:(1)首先求出點A、B的坐標(biāo),然后在Rt△BCP中,解直角三角形求出BC,CP的長度;進(jìn)而利用關(guān)系式AB=BC+CD,列方程求出t的值。
(2)點P運動的過程中,分為四個階段,需要分類討論:
①當(dāng)0<t≤時,如題圖所示,重合部分為△PCD;
②當(dāng)<t≤4時,如答圖1所示,重合部分為四邊形ACPE;
③當(dāng)4<t≤時,如答圖2所示,重合部分為△ACE;
④當(dāng)t>時,無重合部分。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)的圖象經(jīng)過點,且與函數(shù)的圖象相交于點
(1)求的值;
(2)若函數(shù)的圖象與軸的交點是B,函數(shù)的圖象與軸的交點是C,求四邊形的面積(其中O為坐標(biāo)原點).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點A(1,4)和點B
).

(1)求這兩個函數(shù)的表達(dá)式;
(2)觀察圖象,當(dāng)>0時,直接寫出>時自變量的取值范圍;
(3)如果點C與點A關(guān)于軸對稱,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠投入生產(chǎn)一種機器的總成本為2000萬元.當(dāng)該機器生產(chǎn)數(shù)量至少為10臺,但不超過70臺時,每臺成本y與生產(chǎn)數(shù)量x之間是一次函數(shù)關(guān)系,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x(單位:臺)
10
20
30
y(單位:萬元∕臺)
60
55
50
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求該機器的生產(chǎn)數(shù)量;
(3)市場調(diào)查發(fā)現(xiàn),這種機器每月銷售量z(臺)與售價a(萬元∕臺)之間滿足如圖所示的函數(shù)關(guān)系.該廠生產(chǎn)這種機器后第一個月按同一售價共賣出這種機器25臺,請你求出該廠第一個月銷售這種機器的利潤.(注:利潤=售價﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)的圖象交于A(2,4)、B(﹣4,n)兩點.

(1)分別求出y1和y2的解析式;
(2)寫出y1=y2時,x的值;
(3)寫出y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了響應(yīng)國家節(jié)能減排的號召,鼓勵市民節(jié)約用電,我市從2012年7月1日起,居民用電實行“一戶一表”的“階梯電價”,分三個檔次收費,第一檔是用電量不超過180千瓦時實行“基本電價”,第二、三檔實行“提高電價”,具體收費情況如右折線圖,請根據(jù)圖象回答下列問題;

(1)當(dāng)用電量是180千瓦時時,電費是     元;
(2)第二檔的用電量范圍是     ;
(3)“基本電價”是     元/千瓦時;
(4)小明家8月份的電費是328.5元,這個月他家用電多少千瓦時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果一個正比例函數(shù)的圖象與一個反比例函數(shù)的圖象交,那么值為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸,y軸相交于A,B兩點,OA,OB的長分別是方程x2﹣14x+48=0的兩根,且OA<OB.

(1)求點A,B的坐標(biāo).
(2)過點A作直線AC交y軸于點C,∠1是直線AC與x軸相交所成的銳角,sin∠1=,點D在線段CA的延長線上,且AD=AB,若反比例函數(shù)的圖象經(jīng)過點D,求k的值.
(3)在(2)的條件下,點M在射線AD上,平面內(nèi)是否存在點N,使以A,B,M,N為頂點的四邊形是鄰邊之比為1:2的矩形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)=的圖象經(jīng)過點P(3,-1),則的值為              .

查看答案和解析>>

同步練習(xí)冊答案