【題目】如圖,在平面直角坐標系xOy中,拋物線y=a(x+1)2﹣3與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C(0,﹣ ),頂點為D,對稱軸與x軸交于點H,過點H的直線l交拋物線于P,Q兩點,點Q在y軸的右側.

(1)求a的值及點A,B的坐標;
(2)當直線l將四邊形ABCD分為面積比為3:7的兩部分時,求直線l的函數(shù)表達式;
(3)當點P位于第二象限時,設PQ的中點為M,點N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點N的坐標;若不能,請說明理由.

【答案】
(1)

解:∵拋物線與y軸交于點C(0,﹣ ).

∴a﹣3=﹣ ,解得:a= ,

∴y= (x+1)2﹣3

當y=0時,有 (x+1)2﹣3=0,

∴x1=2,x2=﹣4,

∴A(﹣4,0),B(2,0).


(2)

解:∵A(﹣4,0),B(2,0),C(0,﹣ ),D(﹣1,﹣3)

∴S四邊形ABCD=SADH+S梯形OCDH+SBOC= ×3×3+ +3)×1+ ×2× =10.

從面積分析知,直線l只能與邊AD或BC相交,所以有兩種情況:

①當直線l邊AD相交與點M1時,則S = ×10=3,

×3×(﹣y )=3

∴y =﹣2,點M1(﹣2,﹣2),過點H(﹣1,0)和M1(﹣2,﹣2)的直線l的解析式為y=2x+2.

②當直線l邊BC相交與點M2時,同理可得點M2 ,﹣2),過點H(﹣1,0)和M2 ,﹣2)的直線l的解析式為y=﹣ x﹣

綜上所述:直線l的函數(shù)表達式為y=2x+2或y=﹣ x﹣


(3)

解:設P(x1,y1)、Q(x2,y2)且過點H(﹣1,0)的直線PQ的解析式為y=kx+b,

∴﹣k+b=0,

∴b=k,

∴y=kx+k.

,

+( ﹣k)x﹣ ﹣k=0,

∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,

∵點M是線段PQ的中點,∴由中點坐標公式的點M( k﹣1, k2).

假設存在這樣的N點如圖,

直線DN∥PQ,設直線DN的解析式為y=kx+k﹣3

,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)

∵四邊形DMPN是菱形,

∴DN=DM,

∴(3k)2+(3k22=( 2+( 2,

整理得:3k4﹣k2﹣4=0,

∵k2+1>0,

∴3k2﹣4=0,

解得k=±

∵k<0,

∴k=﹣

∴P(﹣3 ﹣1,6),M(﹣ ﹣1,2),N(﹣2 ﹣1,1)

∴PM=DN=2 ,

∵PM∥DN,

∴四邊形DMPN是平行四邊形,

∵DM=DN,

∴四邊形DMPN為菱形,

∴以DP為對角線的四邊形DMPN能成為菱形,此時點N的坐標為(﹣2 ﹣1,1).


【解析】(1)把點C代入拋物線解析式即可求出a,令y=0,列方程即可求出點A、B坐標.(2)先求出四邊形ABCD面積,分兩種情形:①當直線l邊AD相交與點M1時,根據S = ×10=3,求出點M1坐標即可解決問題.②當直線l邊BC相交與點M2時,同理可得點M2坐標.(3)設P(x1 , y1)、Q(x2 , y2)且過點H(﹣1,0)的直線PQ的解析式為y=kx+b,得到b=k,利用方程組求出點M坐標,求出直線DN解析式,再利用方程組求出點N坐標,列出方程求出k,即可解決問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達式;
(2)當P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F(xiàn)為垂足,當點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與△OBC相似?并求出此時點P的坐標;
(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將△ABC繞點A按逆時針方向旋轉θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,如圖①所示,∠BAB′=θ, = = =n,我們將這種變換記為[θ,n].

(1)如圖①,對△ABC作變換[60°, ]得到△AB′C′,則SAB'C:SABC=;直線BC與直線B′C′所夾的銳角為度;

(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;

(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程
(1)先化簡:(1﹣ ,再從1,2,3中選取的一個合適的數(shù)代入求值.
(2)求不等式組 的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求代數(shù)式( )÷ 的值,其中x=2sin60°﹣1,y=tan45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)學校教學樓后面靠近一座山坡,坡面上是一塊平地,如圖所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°,為防夏季因瀑雨引發(fā)山體滑坡,保障安全,學校決定對山坡進行改造,經地質人員勘測,當坡角不超過45°時,可確保山體不滑坡,改造時保持坡腳A不動,從坡頂B沿BC削進到E處,問BE至少是多少米?(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關于該二次函數(shù),下列說法錯誤的是(
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當x< ,y隨x的增大而減小
D.當﹣1<x<2時,y>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關系是 , 位置關系是;
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請出判斷判斷并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種商品的進價為40元/件,以獲利不低于25%的價格銷售時,商品的銷售單價y(元/件)與銷售數(shù)量x(件)(x是正整數(shù))之間的關系如下表:

x(件)

5

10

15

20

y(元/件)

75

70

65

60


(1)由題意知商品的最低銷售單價是___元,當銷售單價不低于最低銷售單價時,y是x的一次函數(shù).求出y與x的函數(shù)關系式及x的取值范圍;
(2)在(1)的條件下,當銷售單價為多少元時,所獲銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

同步練習冊答案