四邊形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,連接DF,G為DF的中點,連接EG,CG,EC.
(1)如圖1,若點E在CB邊的延長線上,直接寫出EG與GC的位置關(guān)系及的值;
(2)將圖1中的△BEF繞點B順時針旋轉(zhuǎn)至圖2所示位置,請問(1)中所得的結(jié)論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由;
(3)將圖1中的△BEF繞點B順時針旋轉(zhuǎn)α(0°<α<90°),若BE=1,,當E,F(xiàn),D三點共線時,求DF的長及tan∠ABF的值.
(1)EG⊥CG,;(2)結(jié)論還成立,證明見解析;

試題分析:(1)過G作GH⊥EC于H,推出EF∥GH∥DC,求出H為EC中點,根據(jù)梯形的中位線求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根據(jù)直角三角形的判定推出△EGC是等腰直角三角形即可.
(2)延長EG到H,使EG=GH,連接CH、EC,過E作BC的垂線EM,延長CD,證△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,證出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案.
(3)連接BD,求出,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.
試題解析:(1)EG⊥CG,,理由是:
如圖1,過G作GH⊥EC于H,
∵∠FEB=∠DCB=90°,∴EF∥GH∥DC.
∵G為DF中點,∴H為EC中點.
∴EG=GC,GH=(EF+DC)=(EB+BC),即GH=EH=BC.
∴∠EGC=90°,即△EGC是等腰直角三角形.


(2)結(jié)論還成立,證明如下:
如圖2,延長EG到H,使EG=GH,連接CH、EC,過E作BC的垂線EM,延長CD,
∵在△EFG和△HDG中,GF=GD,∠FGE=∠DGH,EG=HG,∴△EFG≌△HDG(SAS).
∴DH=EF=BE,∠FEG=∠DHG.∴EF∥DH.
∴∠1=∠2=90°-∠3=∠4.∴∠EBC=180°-∠4=180°-∠1=∠HDC.
在△EBC和△HDC中,BE=DH,∠EBC=∠HDC,BC=CD,∴△EBC≌△HDC.
∴CE=CH,∠BCE=∠DCH.
∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°.
∴△ECH是等腰直角三角形,
∵G為EH的中點,
∴EG⊥GC,,即(1)中的結(jié)論仍然成立.

(3)如圖3,連接BD,
∵AB=,正方形ABCD,∴BD=2.∴.
∴∠DBE=60°.∴∠ABE=∠DBE-∠ABD=15°.∴∠ABF=45°-15°=30°.
.∴DE=BE=.
∴DF=DE-EF=.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形ABCD的邊長為4,∠BAD=120°,點E是AB的中點,點F是AC上的一動點,則EF+BF的最小值是            

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果菱形的兩條對角線的長分別為6cm和8cm,則此菱形的邊長是       cm,面積是    cm2.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在正方形ABCD中,E為CD邊上的一點,F(xiàn)為BC的延長線上一點,CE=CF。
⑴△BCE與△DCF全等嗎?說明理由;
⑵若∠BEC=60o,求∠EFD。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在□ABCD中,E、F分別為邊AB、CD的中點,連接DE、BF、BD.
(1)求證:△ADE≌△CBF ;
(2)當AD⊥BD時,請你判斷四邊形BFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知平行四邊形ABCD中,AC,BD交于點O,若AB=6,AC=8,則BD的取值范圍是     .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,點E、F分別從A、D兩點同時出發(fā),以相同的速度作直線運動.點E在線段AB上運動,點F沿射線CD運動,連結(jié)EF、AF、AC,EF分別交AD和AC 于點O、H.
(1)求證:EO=OF;
(2)當點E運動到什么位置時,EF=AC,在備用圖1中畫出圖形并說明理由;
(3)當點E運動到什么位置時,∠FAD=∠CAD,在備用圖2中畫出圖形并說明理由,此時設四邊形CDOH的面積為S,四邊形ABCF的面積為S,請直接寫出S:S的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,?ABCD的對角線相交于點O,且兩條對角線長的和為36,△OCD的周長為23,則AB的長為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列命題中,正確的是(  )
A.梯形的對角線相等B.菱形的對角線不相等
C.矩形的對角線不能互相垂直D.平行四邊形的對角線可以互相垂直

查看答案和解析>>

同步練習冊答案