【題目】如圖1.已知⊙M與x軸交于A、B兩點,與y軸交于C、D兩點,A、B兩點的橫坐標分別為﹣1和7,弦AB的弦心距MN為3,
(1)求⊙M的半徑;
(2)如圖2,P在弦CD上,且CP=2,Q是弧BC上一動點,PQ交直徑CF于點E,當∠CPQ=∠CQD時,
①判斷線段PQ與直徑CF的位置關系,并說明理由;
②求CQ的長;
(3)如圖3.若P點是弦CD上一動點,Q是弧BC上一動點,PQ交直徑CF于點E,當∠CPQ與∠CQD互余時,求△PEM面積的最大值.
【答案】(1)5;(2)①PQ⊥CF;詳見解析;②4;(3)△PEM面積的最大值為3
【解析】
(1)連接MB,根據題意得出AB=8,再結合垂徑定理可得BN=4,最后進一步利用勾股定理計算求解即可;
(2)①連接DF,由圓周角定理得出∠CDF=90°,由此進一步證明∠CEP=90°即可;②作MN⊥AB于N,MG⊥CD于G,延長QP交⊙M于H,從而通過分析可得AN=4,MN=3,MG=ON=3,再者得出MN=MG,進一步證明CD=AB=8,然后利用勾股定理求得DF=6,接著證明△CPE與△CFD相似,利用相似三角形性質得出CE與PE的長,從而求出EF,最后在此基礎上進一步分析求解即可;
(3)先證出∠DCF=∠CPQ,得出CE=PE,再作EK⊥CP于K,PT⊥CM于T,連接DF,則CK=PK,,據此設EK=3x,則CK=4x,CE=PE=5x,PC=8x,接著證明△CPT~△CFD,利用相似三角形性質得出PT=,CT=,最后根據三角形面積公式得到△PEM的面積,由此利用二次函數的性質進一步求解即可.
(1)連接MB,如圖1所示:
∵A、B兩點的橫坐標分別為和7,
∴AB=8,
∵MN⊥AB,
∴BN=4,
在Rt△BMN中,由勾股定理得:
,
∴⊙M的半徑為5;
(2)①PQ⊥CF;理由如下:
連接DF,如圖2所示,
∵CF是⊙M的直徑,
∴∠CDF=90°,
∴∠CFD+∠DCF=90°,
∵∠CQD=∠CFD,
∴∠CQD+∠DCF=90°,
∵∠CPQ=∠CQD,
∴∠CPQ+∠DCF=90°,
∴∠CEP=90°,
∴PQ⊥CF;
②作MN⊥AB于N,MG⊥CD于G,延長QP交⊙M于H,如圖3所示:
則AN=4,MN=3,MG=ON=3,
∴MN=MG,
∴CD=AB=8,
在Rt△CDF中,CF=2BM=10,,
由①得:PQ⊥CF,
∴∠CEP=∠CDF=90°,EH=EQ,
∵∠PCE=∠FCD,
∴△CPE~△CFD,
∴,
即,
解得:CE=,PE=,
∴EF=CFCE=,
∵EQ×EH=CE×EF,即,
在Rt△CPE中,由勾股定理得:;
(3)∵CF是⊙M的直徑,
∴∠CDF=90°,
∴∠F+∠DCF=90°,
∵∠CQD=∠F,
∴∠CQD+∠DCF=90°,
∵∠CPQ+∠CQD=90°,
∴∠DCF=∠CPQ,
∴CE=PE,
作EK⊥CP于K,PT⊥CM于T,再連接DF,如圖4所示,
則CK=PK,,
設EK=3x,則CK=4x,CE=PE=5x,PC=8x,
∵∠PCT=∠DCF,∠CTP=∠CDF=90°,
∴△CPT~△CFD,
∴,
∴PT=,CT=,
∴△PEM的面積,
∵,
∴S有最大值,且當時,S的最大值為3,
即△PEM面積的最大值為3.
科目:初中數學 來源: 題型:
【題目】圖1、圖2分別是的網格,網格中每個小正方形的邊長均為1,、兩點在小正方形的頂點上,請在圖1、圖2中各取一點(點必須在小正方形的頂點上),使以、、為頂點的三角形分別滿足以下要求:
(1)在圖1中畫一個,使是以為斜邊的直角三角形,且;
(2)在圖2中畫一個,使為等腰三角形,且,直接寫出的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P在BA的延長線上,PA=AO,PD與⊙O相切于點D,BC⊥AB交PD的延長線于點C,若⊙O的半徑為1,則BC的長是( )
A.1.5B.2C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一張矩形紙板和圓形紙板按如圖方式分別剪得同樣大定理特例圖(AC=3,BC=4,AB=5,分別以三邊長向外剪正方形) ,圖1中邊HI、LM和點K、J都恰好在矩形紙板的邊上,圖2中的圓心O在AB中點處,點H、I都在圓上,則矩形和圓形紙板的面積比是( )
A.400:127πB.484:145πC.440:137πD.88:25π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為l的正方形ABCD中,E是邊CD的中點,點P是邊AD上一點(與點A、D不重合),射線PE與BC的延長線交于點Q.
(1)求證:;
(2)過點E作交PB于點F,連結AF,當時,①求證:四邊形AFEP是平行四邊形;
②請判斷四邊形AFEP是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在平面直角坐標系中,點為坐標原點,拋物線交軸于、兩點(點在點的右邊)交軸于點,.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點是第一象限拋物線上的點,連接,過點作于點,,求的面積;
(3)如圖3,在(2)的條件下,連接交于點,點是第四象限拋物線上的點,連接交于點,交軸于點,,過點作直線軸于點,過點作軸,交直線于點,點是拋物線對稱軸右側第一象限拋物線上的點,連接、,的延長線交于點,連接并延長交于點,.求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級有 名學生,在體育考試前隨機抽取部分學生進行跳繩測試,根據測試成績制作了下面兩個不完整的統計圖.請根據相關信息,解答下列問題:
(1)本次參加跳繩測試的學生人數為 ,圖 中 的值為 ;
(2)求本次調查獲取的樣本數據的平均數、眾數和中位數;
(3)根據樣本數據,估計該校九年級跳繩測試中得 分的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形中,,,P是矩形內一點,沿、、、把這個矩形剪開,然后把兩個陰影三角形拼成一個四邊形,則這個四邊形的面積為_________;這個四邊形周長的最小值為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com