如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,2).直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?
(1)y=x+1   y=   (2)
(1)將A坐標代入一次函數(shù)解析式中求出k的值,確定出一次函數(shù)解析式,將A坐標代入反比例函數(shù)解析式中求出m的值,即可確定出反比例解析式;
(2)設(shè)一次函數(shù)與x軸交點為D點,過A作AE垂直于x軸于E,三角形ABC面積=三角形BDN面積-三角形ADE面積-梯形AECN面積,求出即可.
(1)將A(1,2)代入一次函數(shù)解析式得:k+1=2,即k=1,
∴一次函數(shù)解析式為y=x+1;
將A(1,2)代入反比例解析式得:m=2,
∴反比例解析式為y=;

(2)設(shè)一次函數(shù)與x軸交于D點,過A作AE垂直于x軸于E,令y=0,求出x=-1,即OD=1,
∵A(1,2),
∴AE=2,OE=1,
∵直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.
∴點B、C的橫坐標為3,
將x=3代入一次函數(shù)得:y=4,將x=3代入反比例解析式得:y=,
∴B(3,4),即ON=3,BN=4,C(3,),即CN=,
則SABC=SBDN-SADE-S梯形AECN=×4×4-×2×2-×(+2)×2=
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在方格紙中(小正方形的邊長為1),反比例函數(shù)與直線的交點A、B均在格點上,根據(jù)所給的直角坐標系(O是坐標原點),解答下列問題:
(1)①分別寫出點A、B的坐標;
②把直線AB向右平移5個單位,再向上平移5個單位,求出平移后直線A′B′的解析式;
(2)若點C在函數(shù)的圖象上,△ABC是以AB為底的等腰三角形,請寫出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知直線y=x+4與兩坐標軸分別交于A、B兩點,⊙C的圓心坐標為 (2,O),半徑為2,若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最小值和最大值分別是      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)y=2x-b的圖象經(jīng)過點(1,b),則b的值為     .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線軸相交于點A,與軸相交于點B.

(1)求A,B兩點的坐標;
(2)過B點作直線與軸交于點P,若△ABP的面積為,試求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

時,函數(shù)在同一坐標系中的圖象大致是(   )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

梅凱種子公司以一定價格銷售“黃金1號”玉米種子,如果一次購買10千克以上(不含10千克)的種子,超過10千克的那部分種子的價格將打折,并依此得到付款金額y(單位:元)與一次購買種子數(shù)量x(單位:千克)之間的函數(shù)關(guān)系如圖所示,下列四種說法:

①一次購買種子數(shù)量不超過10千克時,銷售價格為5元/千克;
②一次購買30千克種子時,付款金額為100元;
③一次購買10千克以上種子時,超過10千克的那部分種子的價格打五折;
④一次購買40千克種子比分兩次購買且每次購買20千克種子少花25元錢.
其中正確的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為,則a的值是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

兩直線l1:y=2x-1,l2:y=x+1的交點坐標為(  )
A.(-2,3)B.(2,-3)
C.(-2,-3)D.(2,3)

查看答案和解析>>

同步練習冊答案