【題目】平行四邊形一定具有的性質是( )
A. 四邊都相等B. 對角相等C. 對角線相等D. 是軸對稱圖形
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、 、 ;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,等腰△ABC中,點E,F分別在腰AB,AC上,連結EF,若AE=CF,則稱EF為該等腰三角形的逆等線.
(1)如圖1,EF是等腰△ABC的逆等線,若EF⊥AB,AB=AC=5,AE =2,求逆等線EF的長;
(2)如圖2,若等腰直角△DEF的直角頂點D恰好為等腰直角△ABC底邊BC上的中點,且點E,F分別在AB,AC上,求證:EF為等腰△ABC的逆等線;
(3)如圖3,等腰△AOB的頂點O與原點重合,底邊OB在x軸上,反比例函數(shù)y= (x>0)的圖象交△OAB于點C,D,若CD恰為△AOB的逆等線,過點C,D分別作CE⊥x軸,DF⊥x軸,已知OE=2,求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC為直角,以AB為直徑作⊙O交AC于點D,點E為BC中點,連結DE,DB.
(1)求證:DE與⊙O相切;
(2)若∠C=30°,求∠BOD的度數(shù);
(3)在(2)的條件下,若⊙O半徑為2, 求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市計劃對某地塊的1000m2區(qū)域進行綠化,由甲、乙兩個工程隊合作完成.已知甲隊每天能完成綠化的面積是乙隊的2倍;若兩隊分別各完成300m2的綠化時,甲隊比乙隊少用3天.
(1)求甲、乙兩工程隊每天能完成的綠化的面積;
(2)兩隊合作完成此工程,若甲隊參與施工x天,試用含x的代數(shù)式表示乙隊施工的天數(shù)y;
(3)若甲隊每天施工費用是0.6萬元,乙隊每天為0.2萬元,且要求兩隊施工的天數(shù)之和不超過16天,應如何安排甲、乙兩隊施工的天數(shù),才能使施工總費用最低?并求出最低費用時的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】因式分解與整數(shù)乘法一樣,都是一種恒等變形,即在變形的過程中,形變值不變,于是將多項式x2﹣y2+(2x+2y)分解因式的結果為( )
A.(x+y)(x﹣y+2)
B.(x+y)(x﹣y﹣2)
C.(x﹣y)(x﹣y+2)
D.(x﹣y)(x﹣y﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生的身體素質,教育行政部門規(guī)定學生每天參加戶外活動的平均時間不少于1小時.為了解學生參加戶外活動的情況,對部分學生參加戶外活動的時間進行抽樣調查,并將調查結果繪制作成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調查中共調查了多少名學生?
(2)求戶外活動時間為1.5小時的人數(shù),并補充頻數(shù)分布直方圖;
(3)求表示戶外活動時間1小時的扇形圓心角的度數(shù);
(4)本次調查中學生參加戶外活動的平均時間是否符合要求?戶外活動時間的眾數(shù)和中位數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,甲、乙、丙、丁四個長方形拼成正方形EFGH,中間陰影為正方形.已知甲、乙、丙、丁四個長方形面積的和是32cm2 , 四邊形ABCD的面積是20cm2 , 則甲、乙、丙、丁四個長方形周長的總和為cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com