【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足連接CE并延長交AD于點F,連接AE,過B點作于點G,延長BG交AD于點在下列結(jié)論中:
;;,其中正確的結(jié)論有
A.B.C.D.
【答案】B
【解析】
先判斷出∠DAE=∠ABH,再判斷△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判斷出Rt△ABH≌Rt△DCF從而得到①正確,根據(jù)三角形的外角求出∠AEF=45°,得出②正確;連接HE,判斷出S△EFH≠S△EFD得出③錯誤.
∵BD是正方形ABCD的對角線,
∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
∵BE=BC,
∴AB=BE,
∵BG⊥AE,
∴BH是線段AE的垂直平分線,∠ABH=∠DBH=22.5°,
在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
∵∠AGH=90°,
∴∠DAE=∠ABH=22.5°,
在△ADE和△CDE中
,
∴△ADE≌△CDE,
∴∠DAE=∠DCE=22.5°,
∴∠ABH=∠DCF,
在Rt△ABH和Rt△DCF中
,
∴Rt△ABH≌Rt△DCF,
∴AH=DF,∠CFD=∠AHB=67.5°,
∵∠CFD=∠EAF+∠AEF,
∴67.5°=22.5°+∠AEF,
∴∠AEF=45°,故①②正確;
如圖,連接HE,
∵BH是AE垂直平分線,
∴AG=EG,
∴S△AGH=S△HEG,
∵AH=HE,
∴∠AHG=∠EHG=67.5°,
∴∠DHE=45°,
∵∠ADE=45°,
∴∠DEH=90°,∠DHE=∠HDE=45°,
∴EH=ED,
∴△DEH是等腰直角三角形,
∵EF不垂直DH,
∴FH≠FD,
∴S△EFH≠S△EFD,
∴S四邊形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③錯誤,
∴正確的是①②,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.
請根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為________;
(2)請補全條形統(tǒng)計圖;
(3)該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);
(4)小明認(rèn)為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AF為⊙O的直徑,點B在AF的延長線上,BE切⊙O于點E,過點A作AC⊥BE,交BE的延長線交于點C,交⊙O交于點D,連接AE,EF,FD,DE.
(1)求證:EF=ED.
(2)求證:DFAF=2AEEF.
(3)若AE=4,DE=2,求sin∠DFA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.
(1)
對角線條數(shù)分別為 、 、 、 .
(2)n邊形可以有20條對角線嗎?如果可以,求邊數(shù)n的值;如果不可以,請說明理由.
(3)若一個n邊形的內(nèi)角和為1800°,求它對角線的條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點O是AC邊上的一個動點,過點O作直線,設(shè)MN交的角平分線于點E,交的外角平分線于點F.
求證:;
當(dāng)點O運動到何處時,四邊形AECF是矩形?請說明理由;
在的條件下,給再添加一個條件,使四邊形AECF是正方形,那么添加的條件是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根;
(2)若該方程的一個根為1,求a的值及該方程的另一根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,在RT△ABC中,∠C=90°,BC=8,AC=6,動點Q從B點開始在線段BA上以每秒2個單位長度的速度向點A移動,同時點P從A點開始在線段AC上以每秒1個單位長度的速度向點C移動.當(dāng)一點停止運動,另一點也隨之停止運動.設(shè)點Q,P移動的時間為t秒.當(dāng)t=____________ 秒時△APQ與△ABC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=ax2﹣2x+1和y=ax+a(a是常數(shù),且a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com