如圖,A、B是兩座現(xiàn)代化城市,C是一個古城遺址,C城在A城的北偏東30°,在B城的北偏西45°,且C城與A城相距120千米,B城在A城的正東方向,以C為圓心,以60千米為半徑的圓形區(qū)域內(nèi)有古跡和地下文物,現(xiàn)要在A、B兩城市修建一條筆直的高速公路.
(1)請你計算公路的長度(保留根號);
(2)請你分析這條公路有沒有可能對文物古跡造成損毀,并說明理由.
作CD⊥AB于D點.
(1)在Rt△ACD中,
CD=AC•sin60°=120×
3
2
=60
3
,AD=AC•cos60°=120×
1
2
=60,
在Rt△BCD中,BD=CD•tan45°=60
3
×1=60
3
,
所以AB=AD+DB=60+60
3
(km);

(2)不可能.因為CD=60
3
>60,所以不可能對文物古跡造成損毀.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

為了迎接青奧,社區(qū)組織奧林匹克會旗傳遞儀式.需在會場上懸掛奧林匹克會旗,已知矩形DCFE的兩邊DE、DC長分別為1.6m、1.2m.旗桿DB的長度為2m,DB與墻面AB的夾角∠DBG為35°.當會旗展開時,如圖,
(1)求DF的長;
(2)求E點離墻面AB最遠距離.(結果精確到0.1m.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某公園管理處計劃在公園里建一個以C為噴泉中心,半徑為15,米的圓形噴水池.公園里已建有A、B兩個休息亭,AB是一條42米長得人行道,現(xiàn)測得∠A=37°,∠B=45°.若要在人行道AB上安裝噴泉用水控制閥E,使它到噴泉中心C的距離最短.
(1)請你在AB上畫出該點E的位置;
(2)通過計算,你認為該圓形噴水池會影響人行道的通行嗎?
(參考數(shù)據(jù):
2
≈1.41,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知樓房AB高為50m,鐵塔塔基距樓房基間的水平距離BD為100m,塔高CD為
100
3
+150
3
m,則下面結論中正確的是( 。
A.由樓頂望塔頂仰角為60°
B.由樓頂望塔基俯角為60°
C.由樓頂望塔頂仰角為30°
D.由樓頂望塔基俯角為30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為緩解“停車難”的問題,某單位擬建筑地下停車庫,建筑設計師提供了該地下停車庫的設計示意圖,按規(guī)定,地下停車庫坡道口上方要張貼限高標志,以便告知停車人車輛能否安全駛?cè),為標明限高,請你根?jù)該圖計算CE.(精確到0.1m)
(下列數(shù)據(jù)提供參考:sin20°=0.3420,cos20°=0.9397,tan20°=0.3640)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠BAC=90°,AD是BC邊上的高,BC=4AD,求tanB.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)計算:
1
5
+2
+(-3)0
(2)如圖所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,若AC=
3
.求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,山頂建有一座鐵塔,塔高CD=30m,某人在點A處測得塔底C的仰角為20°,塔頂D的仰角為23°,此人距CD的水平距離AB為______.(參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖為了測量某建筑物AB的高度,在平地上C處測得建筑物頂端A的仰角為30°,沿CB方向前進12m到達D處,在D處測得建筑物頂端A的仰角為45°,則建筑物AB的高度等于( 。
A.6(
3
+1)m
B.6(
3
-1)m
C.12(
3
+1)m
D.12(
3
-1)m

查看答案和解析>>

同步練習冊答案