【題目】某班對道德與法治,歷史,地理三門程的選考情況進(jìn)行調(diào)研,數(shù)據(jù)如下:

科目

道德與法治

歷史

地理

選考人數(shù)(人)

19

13

18

其中道德與法治,歷史兩門課程都選了的有3人,歷史,地理兩門課程都選了的有4人,該班至多有多少學(xué)生(

A.41B.42C.43D.44

【答案】C

【解析】

設(shè)三門課都選的有x人,同時選擇地理和道德與法治的有y人,根據(jù)題意得,只選道德與法治有[19-3-y]=16-y)人,只選歷史的有[13-3-4-x]=6+x)人,只選地理的有(18-4-y=14-y)人,即可得出結(jié)論.

解:如圖,設(shè)三門課都選的有x人,同時選擇地理和道德與法治的有y人,

根據(jù)題意得,只選道德與法治有[19-3-y]=16-y)人,

只選歷史的有[13-3-4-x]=6+x)人,

只選地理的有(18-4-y=14-y)人,

即:總?cè)藬?shù)為16-y+y+14-y+4-x+6+x+3-x+x=43-y

當(dāng)同時選擇地理和道德與法治的有0人時,總?cè)藬?shù)最多,最多為43人.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結(jié)DC

(1)圖2中的全等三角形是_______________,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的字母);

2)指出線段DC和線段BE的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D

(1)求作∠ABC的平分線,分別交AD,ACEF兩點;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)證明:AE=AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖(1),已知:在△ABC,BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D,證明:ABD≌△ACE,DE=BD+CE;

(2)如圖(2),(1)中的條件改為:在△ABC中,AB=AC,D, A, E三點都在直線m上,并且有∠BDA=AEC=BAC=a,其中a為任意銳角或鈍角,請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是直線AE上的一點,OC是∠AOD的平分線,∠BODAOD

1)若∠BOD20°,求∠BOC的度數(shù);

2)若∠BOC,用含有n的代數(shù)式表示∠EOD的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a、b為常數(shù),a≠0)與x軸相交于另一點A(3,0).直線l:y=x在第一象限內(nèi)和此拋物線相交于點B(5,t),與拋物線的對稱軸相交于點C.

(1)求拋物線的解析式;

(2)在x軸上找一點P,使以點P、O、C為頂點的三角形與以點A、O、B為頂點的三角形相似,求滿足條件的點P的坐標(biāo);

(3)直線l沿著x軸向右平移得到直線l′,l′與線段OA相交于點M,與x軸下方的拋物線相交于點N,過點NNEx軸于點E.把MEN沿直線l′折疊,當(dāng)點E恰好落在拋物線上時(圖2),求直線l′的解析式;

(4)在(3)問的條件下(圖3),直線l′y軸相交于點K,把MOK繞點O順時針旋轉(zhuǎn)90°得到M′OK′,點F為直線l′上的動點.當(dāng)M'FK′為等腰三角形時,求滿足條件的點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲柄連桿裝置是很多機械上不可缺少的,曲柄OA繞O點圓周運動,連桿AP拉動活塞作往復(fù)運動.當(dāng)曲柄的A旋轉(zhuǎn)到最右邊時,如圖(1),OP長為8cm;當(dāng)曲柄的A旋轉(zhuǎn)到最左邊時,如圖(2)OP長為18cm.

(1)求曲柄OA和連桿AP分別有多長;

(2)求:OA⊥OP時,如圖(3),OP的長是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.

(1)開通隧道前,汽車從A地到B地大約要走多少千米?

(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D、E分別是等邊三角形ABC的邊BC、AC上的點,連接ADBE交于點O,且ABD≌△BCE

1)若AB=3AE=2,則BD=

2)若∠CBE=15°,則∠AOE= ;

3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案