【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經過第2011次運動后,動點P的坐標是

【答案】(2011,2)
【解析】解:根據(jù)動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),

第2次接著運動到點(2,0),第3次接著運動到點(3,2),

∴第4次運動到點(4,0),第5次接著運動到點(5,1),…,

∴橫坐標為運動次數(shù),經過第2011次運動后,動點P的橫坐標為2011,

縱坐標為1,0,2,0,每4次一輪,

∴經過第2011次運動后,動點P的縱坐標為:2011÷4=502余3,

故縱坐標為四個數(shù)中第三個,即為2,

∴經過第2011次運動后,動點P的坐標是:(2011,2),

所以答案是:(2011,2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A,B的坐標分別為A(a,b)、B(c,d),其中a>c,把點A 向上平移2單位,向左平移1個單位得點A1

(1)點A1的坐標為
(2)若a,b,c滿足 ,請用含m的式子表示a,b,c.
(3)在(2)的前提下,若點A、B在第一象限或坐標軸的正半軸上,S 的面積是否存在最大值或最小值,如果存在,請求出這個值.如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.

(1)求此拋物線的解析式;

(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;

(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有16筐白菜,以每筐30千克為標準,超過或不足的分別用正、負來表示,記錄如下:

(1)16筐白菜中,最重的一筐比最輕的一筐要重多少千克?
(2)與標準質量比較,16筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價3元,則出售這16筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點O,與BC相交于N,連接MN,DN.請你判定四邊形BMDN是什么特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC∽△A’B’C’,且ABCA’B’C’的面積之比為1:4,則相似比為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a2﹣b2=5,a+b=﹣2,那么代數(shù)式a﹣b的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學小組的同學為了解“閱讀經典”活動的開展情況,隨機調查了50名同學,對他們一周的閱讀時間進行了統(tǒng)計,并繪制成如圖所示的條形統(tǒng)計圖,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )

A.中位數(shù)和眾數(shù)都是8小時
B.中位數(shù)是25人,眾數(shù)是20人
C.中位數(shù)是13人,眾數(shù)是20人
D.中位數(shù)是6小時,眾數(shù)是8小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD置于直角坐標系中,點A(4,0),點B(0,3),點D(異于點B、C)為邊BC上動點,過點O、D折疊紙片,得點B′和折痕OD.過點D再次折疊紙片,使點C落在直線DB′上,得點C′和折痕DE,連接OE,設BD=t.

(1)當t=1時,求點E的坐標;

(2)設S四邊形OECB=s,用含t的式子表示s(要求寫出t的取值范圍);

(3)當OE取最小值時,求點E的坐標.

查看答案和解析>>

同步練習冊答案