若點(diǎn)M(1,a)在直線y=3x上,則直線y=3x繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的解析式為   
【答案】分析:先把點(diǎn)M代入直線y=3x求出a的值,再求出點(diǎn)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的點(diǎn)的坐標(biāo),利用待定系數(shù)法即可得出所求函數(shù)的解析式.
解答:解:∵點(diǎn)M(1,a)在直線y=3x上,
∴a=3×1=3,
∴M(1,3),
∴點(diǎn)M旋轉(zhuǎn)90°所得M′的坐標(biāo)為(-3,1),
∵設(shè)過點(diǎn)M′及原點(diǎn)O的解析式為y=kx(k≠0),即1=-3k,解得k=-
∴直線y=3x繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的解析式為:y=-x.
故答案為:y=-x.
點(diǎn)評(píng):本題考查的是一次函數(shù)的圖象與幾何變換,根據(jù)題意求出點(diǎn)M旋轉(zhuǎn)90°后所得點(diǎn)M′的坐標(biāo)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時(shí)以每秒1個(gè)單位的速度沿水平方向分別向右、向左運(yùn)動(dòng);與此同時(shí),點(diǎn)M,點(diǎn)N同時(shí)以每秒2個(gè)單位的速度沿堅(jiān)直方向分別向下、向上運(yùn)動(dòng),直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動(dòng)時(shí)間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動(dòng)過程中,四邊形MDNA能否形成矩形?若能,求出此時(shí)t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點(diǎn)D是線段OC上一點(diǎn),過點(diǎn)D作DE⊥AD交直線BC于點(diǎn)E,以A、D、E為頂點(diǎn)作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點(diǎn)A坐標(biāo)為(0,4),點(diǎn)C坐標(biāo)為(7,0).
①當(dāng)點(diǎn)D的坐標(biāo)為(5,0)時(shí),拋物線y=ax2+bx+c過A、F、B三點(diǎn),求點(diǎn)F的坐標(biāo)及a、b、c的值;
②若點(diǎn)D(k,0)是線段OC上任意一點(diǎn),點(diǎn)F是否還在①中所求的拋物線上?如果在,請(qǐng)說明理由;如果不在,請(qǐng)舉反例說明;
(3)若點(diǎn)A的坐標(biāo)是(0,m),點(diǎn)C的坐標(biāo)是(n,0),當(dāng)點(diǎn)D在線段OC上運(yùn)動(dòng)時(shí),是否也存在一條拋物線,使得點(diǎn)F都落在該拋物線上?若存在,請(qǐng)直接用含m精英家教網(wǎng)、n的代數(shù)式表示該拋物線;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點(diǎn),過點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A、B在第一象限內(nèi).
(1)求點(diǎn)E的坐標(biāo);
(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過M作MN∥AO交折線ABC于點(diǎn)N,連接PN.設(shè)PE=x.△PMN的面積為S.
①求S關(guān)于x的函數(shù)關(guān)系式;
②△PMN的面積是否存在最大值,若不存在,請(qǐng)說明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個(gè)單位的速度沿OC方向向右移動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止(如圖2).設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為E′D′G′H′;探究:在運(yùn)動(dòng)過程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時(shí)間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒4cm的速度沿線段A、DC向C點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)以每秒5cm的速度沿CB向B點(diǎn)運(yùn)動(dòng) 當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒.
(1)當(dāng)t=
4
9
4
9
秒時(shí),四邊形PQCD是平行四邊形;
(2)當(dāng)t=
7
4
7
4
秒時(shí),PQ⊥DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若在方格(每小格正方形邊長(zhǎng)為1m)上沿著網(wǎng)格線平移,規(guī)定:沿水平方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個(gè)單位),沿豎直方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個(gè)單位),則把有序數(shù)對(duì){a,b}叫做這一平移的“平移量”.例如:點(diǎn)A按“平移量”{1,4}可平移至點(diǎn)B.
(1)從點(diǎn)C按“平移量”{
-2
-2
,
-1
-1
}可平移到點(diǎn)B;
(2)若點(diǎn)B依次按“平移量”{4,-3}、{-2,1}平移至點(diǎn)D,
①請(qǐng)?jiān)趫D中標(biāo)出點(diǎn)D;(用黑色水筆在答題卡上作出點(diǎn)D)
②如果每平移1m需要2.5秒,那么按此方法從點(diǎn)B移動(dòng)至點(diǎn)D需要多少秒?
③觀察點(diǎn)D的位置,其實(shí)點(diǎn)B也可按“平移量”{
2
2
,
-2
-2
}直接平移至點(diǎn)D;觀察這兩種平移的“平移量”,猜想:點(diǎn)E依次按“平移量”{2a,3b}、{-5a,b}、{a,-5b}平移至點(diǎn)F,則相當(dāng)于點(diǎn)E按“平移量”{
-2a
-2a
,
-b
-b
}直接平移至點(diǎn)F.

查看答案和解析>>

同步練習(xí)冊(cè)答案