如圖,AD是圓O的切線,切點(diǎn)為A,AB是圓O 的弦.過(guò)點(diǎn)B作BC//AD,交圓O于點(diǎn)C,連接AC,過(guò)點(diǎn)C作CD//AB,交AD于點(diǎn)D.連接AO并延長(zhǎng)交BC于點(diǎn)M,交過(guò)點(diǎn)C的直線于點(diǎn)P,且ÐBCP=ÐACD.
(1) 判斷直線PC與圓O的位置關(guān)系,并說(shuō)明理由:
(2) 若AB=9,BC=6,求PC的長(zhǎng).
(1)相切;證明見(jiàn)解析;(2).
【解析】
試題分析:(1)通過(guò)分析,直線與圓O已經(jīng)有一個(gè)公共點(diǎn),連接半徑0C,只要證明OC⊥PC即可;(2)根據(jù)AD是切線和AD∥BC證明AP⊥BC,利用垂徑定理計(jì)算出CM=BM=3,在Rt△AMB中,利用勾股定義計(jì)算出AM的長(zhǎng),在Rt△OMC中,利用勾股定理建立方程計(jì)算出圓O的半徑的長(zhǎng),最后證明△OMC~△OCP,利用相似三角形的對(duì)應(yīng)邊成比例計(jì)算出PC的長(zhǎng).
試題解析: (1) 直線PC與圓O相切.
連接CO并延長(zhǎng),交圓O于點(diǎn)N,連接BN.
∵AB//CD,
∴ÐBAC=ÐACD.
∵ÐBAC=ÐBNC,
∴ÐBNC=ÐACD.
∵ÐBCP=ÐACD,
∴ÐBNC=ÐBCP.
∵CN是圓O的直徑,
∴ÐCBN=90°.
∴ÐBNC+ÐBCN=90°,
∴ÐBCP+ÐBCN=90°.
∴ÐPCO=90°,即PC^OC.
又∵點(diǎn)C在圓O上,
∴直線PC與圓O相切.
(2) ∵AD是圓O的切線,
∴AD^OA,即ÐOAD=90°.
∵BC//AD,
∴ÐOMC=180°-ÐOAD=90°,即OM^BC.
∴MC=MB.
∴AB=AC.
在Rt△AMC中,ÐAMC=90°,AC=AB=9,MC= BC=3,
由勾股定理,得AM===6.
設(shè)圓O的半徑為r.
在Rt△OMC中,ÐOMC=90°,OM=AM-AO=6-r,MC=3,OC=r,
由勾股定理,得OM 2+MC 2=OC 2,
∴(6-r)2+32=r2.
解得r= .
在△OMC和△OCP中,
∵ÐOMC=ÐOCP,ÐMOC=ÐCOP,
∴△OMC~△OCP.
∴=,即 =.
∴PC=.
考點(diǎn):1切線的性質(zhì)和判定,2勾股定理,3相似三角形的性質(zhì)和判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:湖北省同步題 題型:證明題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:《第27章 相似》2010年麻城市白果鎮(zhèn)第二中學(xué)單元測(cè)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年九年級(jí)數(shù)學(xué)下冊(cè)綜合檢測(cè)卷(二)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com