已知△ABC與△A1B1C1相似,且AB:A1B1=1:2,則△ABC與△A1B1C1的面積比為


  1. A.
    1:1
  2. B.
    1:2
  3. C.
    1:4
  4. D.
    1:8
C
分析:根據(jù)相似三角形性質(zhì)“相似三角形面積的比等于相似比的平方”直接可解.
解答:∵△ABC∽△A1B1C1
∵AB:A1B1=1:2
∴△ABC與△A1B1C1的面積比為1:4.
故選C.
點(diǎn)評(píng):本題考查對(duì)相似三角形性質(zhì)的理解.
(1)相似三角形周長(zhǎng)的比等于相似比.
(2)相似三角形面積的比等于相似比的平方.
(3)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比、對(duì)應(yīng)角平分線的比都等于相似比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、已知△ABC∽△A1B1C1,頂點(diǎn)A、B、C分別與A1、B1、C1對(duì)應(yīng),若∠A=40°,∠C=60°,則∠B1=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(0,-2)、B(3,-1)、C(2,1).
(1)在網(wǎng)格圖中,畫出△ABC以點(diǎn)B為位似中心,放大到2倍后的位似△A1BC1;
(2)寫出A1、C1的坐標(biāo)(其中A1與A對(duì)應(yīng)、C1與C對(duì)應(yīng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知△ABC∽△A1B1C1,頂點(diǎn)A、B、C分別與A1、B1、C1對(duì)應(yīng),AB:A1B1=3:5,BE、B1E1分別是它們的對(duì)應(yīng)中線,則BE:B1E1=
3:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•西城區(qū)二模)閱讀下列材料
小華在學(xué)習(xí)中發(fā)現(xiàn)如下結(jié)論:
如圖1,點(diǎn)A,A1,A2在直線l上,當(dāng)直線l∥BC時(shí),S△ABC=SA1BC=SA2BC
請(qǐng)你參考小華的學(xué)習(xí)經(jīng)驗(yàn)畫圖(保留畫圖痕跡):
(1)如圖2,已知△ABC,畫出一個(gè)等腰△DBC,使其面積與△ABC面積相等;
(2)如圖3,已知△ABC,畫出兩個(gè)Rt△DBC,使其面積與△ABC面積相等(要求:所畫的兩個(gè)三角形不全等);
(3)如圖4,已知等腰△ABC中,AB=AC,畫出一個(gè)四邊形ABDE,使其面積與△ABC面積相等,且一組對(duì)邊DE=AB,另一組對(duì)邊BD≠AE,對(duì)角∠E=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC與△A1B1C1相似,頂點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別是A1、B1、C1,∠A=55°,∠B=100°,則∠C1的度數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案