【題目】如圖,AB是⊙O的直徑,CD切⊙O于點(diǎn)C,AD交⊙O于點(diǎn)E,AC平分∠BAD,連接BE

1)求證:CDED;

2)若CD=4,AE=2,求⊙O的半徑.

【答案】(Ⅰ)見解析;(Ⅱ)⊙O的半徑為

【解析】

(Ⅰ)連接OC,根據(jù)CD切⊙O于點(diǎn)C得出OCDC,由OA=OC,得出∠OAC=OCA,則可證明∠OCA=DAC,證得OCAD,根據(jù)平行線的性質(zhì)即可證明;
(Ⅱ)根據(jù)圓周角定理證得∠AEB=90°,根據(jù)垂徑定理證得EF=BF,進(jìn)而證得四邊形EFCD是矩形,從而證得BE=8,然后根據(jù)勾股定理求得AB,即可求得半徑.

解:(Ⅰ)證明:連接OC,交BEF,由DC是切線得OCDC;

又∵OAOC

∴∠OAC=∠OCA,

AC平分∠BAD,

∴∠DAC=∠OAC

∴∠OCA=∠DAC

OCAD,

∴∠D=∠OCD90°

CDED

(Ⅱ)∵AB是⊙O的直徑,∴∠AEB90°,

∵∠D90°,∴∠AEB=∠D

BECD,

OCCD,∴OCBE

EFBF,

OCED,

∴四邊形EFCD是矩形,

EFCD4,∴BE8,

AE2

AB2

∴⊙O的半徑為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線向右平移2個(gè)單位得到拋物線,且平移后的拋物線經(jīng)過點(diǎn)

求平移后拋物線的表達(dá)式;

設(shè)原拋物線與y軸的交點(diǎn)為B,頂點(diǎn)為P,平移后的新拋物線的對(duì)稱軸與x軸交于點(diǎn)M,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.

(1)直接寫出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PFDE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;

①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?

②設(shè)BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),直線軸交于點(diǎn).動(dòng)點(diǎn)在拋物線上運(yùn)動(dòng),過點(diǎn)軸,垂足為,交直線于點(diǎn)

1)求拋物線的解析式;

2)當(dāng)點(diǎn)在線段上時(shí),的面積是否存在最大值,若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由;

3)點(diǎn)是拋物線對(duì)稱軸與軸的交點(diǎn),點(diǎn)軸上一動(dòng)點(diǎn),點(diǎn)在運(yùn)動(dòng)過程中,若以為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線.

(1)求證:該拋物線與x軸總有交點(diǎn);

(2)若該拋物線與x軸有一個(gè)交點(diǎn)的橫坐標(biāo)大于3且小于5,求m的取值范圍;

(3)設(shè)拋物線軸交于點(diǎn)M,若拋物線與x軸的一個(gè)交點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好是點(diǎn)M,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(m+1)x2﹣2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,

(1)求m的取值范圍;

(2)若x=1是方程的一個(gè)根,求m的值和另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為4cm,∠A60°,弧BD是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的弧,弧CD是以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧,則陰影部分的面積為( 。

A. 2cm2B. 4cm2C. 4cm2D. πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為圓心,任意長(zhǎng)為半徑畫弧分別交于點(diǎn),再分別以為圓心,大于 的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),則下列說法中正確的個(gè)數(shù)是()

①點(diǎn)的兩邊距離相等;

②點(diǎn)的中垂線上;

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小濤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖像與性質(zhì)進(jìn)行了探究,下面是小濤的探究過程,請(qǐng)補(bǔ)充完整:

1)下表是的幾組對(duì)應(yīng)值

...

-2

-1

0

1

2

3

...

...

-8

-3

0

m

n

1

3

...

請(qǐng)直接寫出:=, m=, n=;

2)如圖,小濤在平面直角坐標(biāo)系中,描出了上表中已經(jīng)給出的部分對(duì)應(yīng)值為坐標(biāo)的點(diǎn),再描出剩下的點(diǎn),并畫出該函數(shù)的圖象;

3)請(qǐng)直接寫出函數(shù)的圖像性質(zhì):;(寫出一條即可)

4)請(qǐng)結(jié)合畫出的函數(shù)圖象,解決問題:若方程有三個(gè)不同的解,直接寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案