【題目】如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.
【答案】5
【解析】
作輔助線,構(gòu)建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構(gòu)建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.
過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,
設CM=a,
∵AB=AC,
∴BC=2CM=2a,
∵tan∠ACB=2,
∴=2,
∴AM=2a,
由勾股定理得:AC=a,
S△BDC=BCDH=10,
2aDH=10,
DH=,
∵∠DHM=∠HMG=∠MGD=90°,
∴四邊形DHMG為矩形,
∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
∵∠ADC=90°=∠ADG+∠CDG,
∴∠ADG=∠CDH,
在△ADG和△CDH中,
∵,
∴△ADG≌△CDH(AAS),
∴DG=DH=MG=,AG=CH=a+,
∴AM=AG+MG,
即2a=a++,
a2=20,
在Rt△ADC中,AD2+CD2=AC2,
∵AD=CD,
∴2AD2=5a2=100,
∴AD=5或5(舍),
故答案為:5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點A在x軸上,且A(4,0),點B在y軸上,且B(0,4).
(1)求線段AB的長;
(2)若點E在線段AB上,OE⊥OF,且OE=OF,求AE+AF的值;
(3)在(2)的條件下,過O作OM⊥EF,交AB于M,試確定線段BE、EM、AM之間的數(shù)量關系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年東營市教育局在全市中小學開展了“情系疏勒書香援疆”捐書活動,200多所學校的師生踴躍參與,向新疆疏勒縣中小學共捐贈愛心圖書28.5萬余本.某學校學生社團對本校九年級學生所捐圖書進行統(tǒng)計,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.請你根據(jù)統(tǒng)計圖表中所提供的信息解答下列問題:
圖書種類 | 頻數(shù)(本) | 頻率 |
名人傳記 | 175 | a |
科普圖書 | b | 0.30 |
小說 | 110 | c |
其他 | 65 | d |
(1)求該校九年級共捐書多少本;
(2)統(tǒng)計表中的a= ,b= ,c= ,d= ;
(3)若該校共捐書1500本,請估計“科普圖書”和“小說”一共多少本;
(4)該社團3名成員各捐書1本,分別是1本“名人傳記”,1本“科普圖書”,1本“小說”,要從這3人中任選2人為受贈者寫一份自己所捐圖書的簡介,請用列表法或樹狀圖求選出的2人恰好1人捐“名人傳記”,1人捐“科普圖書”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.
(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;
(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;
(3)連接ME,并直接寫出EM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,直角邊為a、b,斜邊為c.若把關于x的方程ax2+cx+b=0稱為“勾系一元二次方程”,則這類“勾系一元二次方程”的根的情況是( 。
A. 有兩個不相等的實數(shù)根 B. 有兩個相等的實數(shù)根
C. 沒有實數(shù)根 D. 一定有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸交于點,點在直線上,點是線段上的一個動點,過點作軸交直線點,設點的橫坐標為.
(1)的值為 ;
(2)用含有的式子表示線段的長;
(3)若的面積為,求與之間的函數(shù)表達式,并求出當最大時點的坐標;
(4)在(3)的條件下,把直線沿著軸向下平移,交軸于點,交線段于點,若點的坐標為,在平移的過程中,當時,請直接寫出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com