【題目】(請?jiān)诶ㄌ柪镒⒚髦匾耐评硪罁?jù))
如圖,已知AM∥BN,∠A=60°.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),∠ABC的度數(shù)是 .
【答案】(1)∠CBD=60°;(2)不變化,∠APB=2∠ADB,證明見解析;(3)∠ABC=30°.
【解析】
試題分析:(1)由平行線的性質(zhì)可求得∠ABN,再根據(jù)角平分線的定義和整體思想可求得∠CBD;
(2)由平行線的性質(zhì)可得∠APB=∠PBN,∠ADB=∠DBN,再由角平分線的定義可求得結(jié)論;
(3)由平行線的性質(zhì)可得到∠ACB=∠CBN=60°+∠DBN,結(jié)合條件可得到∠DBN=∠ABC,且∠ABC+∠DBN=60°,可求得∠ABC的度數(shù).
試題解析: (1)∵AM∥BN,
∴∠A+∠ABN=180°,(兩直線平行,同旁內(nèi)角互補(bǔ))
∵∠A=60°
∴∠ABN=120°
∵BC、BD分別平分∠ABP和∠PBN,
∴∠CBP=∠ABP, ∠DBP=∠NBP,
∴∠CBD=∠ABN=60°
(2)不變化,∠APB=2∠ADB
證明∴ ∵AM∥BN,
∴∠APB=∠PBN (兩直線平行,內(nèi)錯(cuò)角相等)
∠ADB=∠DBN (兩直線平行,內(nèi)錯(cuò)角相等)
又∵BD平分∠PBN,
∴∠PBN =2∠DBN
∴∠APB=2∠ADB
(3)∠ABC=30°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.2a3+a2=3a5
B.(3a)2=6a2
C.(a+b)2=a2+b2
D.2a2a3=2a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在平行四邊形ABCD中,AC、BD交于點(diǎn)O,過點(diǎn)O作直線EF分別交AD、BC于點(diǎn)E、F,
求證:OE=OF.
(2)在圖①中,過點(diǎn)O作直線GH分別交AB、CD于點(diǎn)G、H,且滿足GH⊥EF,連結(jié)EG、GF、FH、HE.如圖②,試判斷四邊形EGFH的形狀,并說明理由;
(3)在(2)的條件下,
若平行四邊形ABCD變?yōu)榫匦螘r(shí),四邊形EGFH是 ;
若平行四邊形ABCD變?yōu)榱庑螘r(shí),四邊形EGFH是 ;
若平行四邊形ABCD變?yōu)檎叫螘r(shí),四邊形EGFH是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果m是一個(gè)有理數(shù),那么﹣m是( )
A.正數(shù)
B.0
C.負(fù)數(shù)
D.以上三者情況都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a=8131 , b=2741 , c=961 , 則a,b,c的大小關(guān)系是( )
A.a>b>c
B.a>c>b
C.a<b<c
D.b>c>a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com