【題目】如圖所示,點O為直線BD上的一點,OC⊥OA,垂足為點O,∠COD=2∠BOC,求∠AOB的度數(shù).

【答案】解:∵點O為直線BD上一點,

∴∠COD+∠B0C=180°,

將∠COD=2∠B0C代入,

得2∠BOC+∠BOC=180°,

解得∠BOC=60°,

∴∠AOB=∠COA﹣∠BOC=90°﹣60°=30°


【解析】先由點O為直線BD上一點,根據(jù)鄰補角定義得出∠COD+∠BOC=180°,將∠COD=2∠B0C代入,求出∠BOC=60°,再根據(jù)∠AOB=∠COA-∠BOC即可求解.
【考點精析】通過靈活運用角的運算和垂線的性質(zhì),掌握角之間可以進行加減運算;一個角可以用其他角的和或差來表示;垂線的性質(zhì):1、過一點有且只有一條直線與己知直線垂直.2、垂線段最短即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=40°,AB的垂直平分線MN交AC于點D,則∠DBC=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗的家和學(xué)校在一條筆直的馬路旁,某天小麗沿著這條馬路上學(xué),先從家步行到公交站臺甲,再乘車到公交站臺乙下車,最后步行到學(xué)校(在整個過程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學(xué)校之間的距離y(米)與她離家時間x(分鐘)之間的函數(shù)關(guān)系.

(1)求小麗步行的速度及學(xué)校與公交站臺乙之間的距離;

(2)當8≤x≤15時,求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=5是方程ax+3bx﹣10=0的解,則3a+9b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三(1)班進行立定跳遠訓(xùn)練,以下是李超和陳輝同學(xué)六次的訓(xùn)練成績(單位:m)

1

2

3

4

5

6

李超

2.50

2.42

2.52

2.56

2.48

2.58

陳輝

2.54

2.48

2.50

2.48

2.54

2.52

(1)李超和陳輝的平均成績分別是多少?
(2)分別計算兩人的六次成績的方差,哪個人的成績更穩(wěn)定?為什么?
(3)若預(yù)知參加級的比賽能跳過2.55米就可能得冠軍,應(yīng)選哪個同學(xué)參加?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列正確的是(
A.﹣(﹣21)<+(﹣21)
B. ??
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的三邊長分別為①5,12,13; 9,40,41; 8,15,17; 13,84,85. 其中能夠構(gòu)成直角三角形的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結(jié)論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4) 中正確的有( )

A. 4個
B. 3個
C. 2個
D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組的兩個數(shù)中,運算后結(jié)果相等的是(
A.23和32
B.﹣53和(﹣5)3??
C.﹣|﹣5|和﹣(﹣5)
D.(﹣ 3和﹣

查看答案和解析>>

同步練習(xí)冊答案