精英家教網 > 初中數學 > 題目詳情

【題目】如圖表示小亮從家出發(fā)步行到公交車站,等公交車最后到達學校,圖中的折線表示小亮的行程s(km)與所花時間t(min)之間的函數關系,下列說法中正確的個數有( )

①學校和小亮家的路程為8km; ②小亮等公交車的時間為6min;

③小亮步行的速度是100m/min;④公交車的速度是350m/min;

⑤小亮從家出發(fā)到學校共用了24min.

A. 2個 B. 3個 C. 4個 D. 5個

【答案】B

【解析】圖中的縱坐標表示小亮的行程,橫坐標表示所花時間,根據圖中從時間開始到時間結束小亮共行駛了8km,所以學校和小亮家的路程為8km,正確,根據圖中第10min到第16min,小亮的路程沒有發(fā)生變化,說明這6min小亮在等公交車,正確,根據圖象可得:小亮從家到公交站用時10min,走了1km,所以可求得小亮步行的速度是100m/min,正確,

根據圖象可得小亮乘公交車用了14min,行駛了7km,所以可求得公交車的速度是500 m/min,

錯誤,根據圖象可得小亮從家到學校共用時30min,錯誤,所以正確的有3,故選B.

點睛:本題主要考查函數圖象信息分析,解決本題的關鍵是理解函數關系.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在數軸上與表示-3的點相距5個單位長度的點所表示的數是_________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016年3月國際風箏節(jié)期間,王大伯決定銷售一批風箏,經市場調研:蝙蝠型風箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達式表示蝙蝠型風箏銷售量y(個)與售價x(元)之間的函數關系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應定為多少?

(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若﹣|x1|2y+220,則x+y=(  )

A.1B.3C.5D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在解方程組時,由于粗心,甲看錯了方程組中的a,而得解為,乙看錯了方程組中的b,而得解為,根據上面的信息解答:

(1)甲把a看成了什么數,乙把b看成了什么數?

(2)求出正確的ab的值;

(3)求出原方程組的正確解,并求出代數式·的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明同學去某批零兼營的文具店,為學校美術小組的30名同學購買鉛筆和橡皮.若給全組每人各買2支鉛筆和1塊橡皮,那么需按零售價購買,共支付30元;若給全組每人各買3支鉛筆和2塊橡皮,那么可按批發(fā)價購買,共支付40.5元.已知1支鉛筆的批發(fā)價比零售價低0.05元,1塊橡皮的批發(fā)價比零售價低0.10元.請解決下列問題(均需寫出解題過程):

(1)問這家文具店每支鉛筆和每塊橡皮的批發(fā)價各是多少元?

(2)小亮同學用4元錢在這家文具店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),有哪幾種購買方案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, 是等邊三角形內的一點,連結、,以為邊作.連結

1)觀察并猜想之間的大小關系,并證明你的結論.

2)若, , ,連結,試判斷的形狀,并說明理由.

3)在(2)的條件下,求的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正如我們小學學過的圓錐體積公式V=πr2hπ表示圓周率,r表示圓錐的地面半徑,h表示圓錐的高)一樣,許多幾何量的計算都要用到π.祖沖之是世界上第一個把π計算到小數點后7位的中國古代科學家,創(chuàng)造了當時世界上的最高水平,差不多過了1000年,才有人把π計算得更精確.在輝煌成就的背后,我們來看看祖沖之付出了多少.現在的研究表明,僅僅就計算來講,他至少要對9位數字反復進行130次以上的各種運算,包括開方在內.即使今天我們用紙筆來算,也絕不是一件輕松的事情,何況那時候沒有現在的紙筆,數學計算不是用現在的阿拉伯數字,而是用算籌(小竹棍或小竹片)進行的,這需要怎樣的細心和毅力!他這種嚴謹治學的態(tài)度,不怕復雜計算的毅力,值得我們學習.

下面我們就來通過計算解決問題:已知圓錐的側面展開圖是個半圓,若該圓錐的體積等于,則這個圓錐的高等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△AOB為等腰直角三角形,AB=OA,B(8,0),△ACDx軸上方的等腰直角三角形,∠ACD=90°,連OD.

(1)A點的坐標為_____;

(2)作CH⊥x軸交AO的延長線于點H,

求證:△DCO≌△ACH;

∠AOD的度數;

(3)若點Cx軸負半軸上運動時,其它條件不變,∠AOD的度數會發(fā)生變化嗎?請說明你的理由.

查看答案和解析>>

同步練習冊答案