【題目】兩個全等的等腰直角三角形,斜邊長為2,按如圖放置,其中一個三角形45°角的項點與另一個三角形的直角頂點A重合,若三角形ABC固定,當另一個三角形繞點A旋轉(zhuǎn)時,它的角邊和斜邊所在的直線分別與邊BC交于點E、F,設BF=CE=則關于的函數(shù)圖象大致是( )
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】當當和叮叮玩紙牌游戲:如圖是同一副撲克牌中的4張黑桃牌的正面,將這4張牌正面朝下洗勻后放在桌上,當當先從中抽出一張,叮叮從剩余的3張牌中也抽出一張,比較兩人抽出的牌面上的數(shù)字,數(shù)字大者獲勝.
(1)求當當抽出的牌面上的數(shù)字為6的概率;
(2)該游戲是否公平?請用畫樹狀圖或列表的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點P從點A出發(fā),以每秒1cm的速度沿AC運動;同時點Q從點C出發(fā),以每秒2cm的速度沿CB運動,當Q到達點B時,點P同時停止運動.
(1)求運動幾秒時△PCQ的面積為5cm2?
(2)△PCQ的面積能否等于10cm2?若能,求出運動時間,若不能,說明理由;
(3)是否存在某個時刻t,使四邊形ABQP的面積最?若存在,求出運動時間,若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD為正方形,點A的坐標為(0,3),點B的坐標為(0,﹣4),反比例﹣函數(shù)y=(k≠0)的圖象經(jīng)過點C.
(1)求反比例函數(shù)的解析式;
(2)點P是反比例函數(shù)在第二象限的圖象上的一點,若△PBC的面積等于正方形ABCD的面積,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1).
(1)畫出△ABC;
(2)畫出△ABC關于x軸對稱的△A1B1C1,并寫出A1點的坐標: ;
(3)以O為位似中心,在第一象限內(nèi)把△ABC擴大到原來的兩倍,得到△A2B2C2,并寫出A2點的坐標: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CE是圓O的直徑,點B在圓O上由點E順時針向點C運動(點B不與點E、C重合),弦BD交CE于點F,且BD=BC,過點B作弦CD的平行線與CE的延長線交于點A.
(1)若圓O的半徑為2,且點D為弧EC的中點時,求圓心O到弦CD的距離;
(2)當DFDB=CD2時,求∠CBD的大;
(3)若AB=2AE,且CD=12,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖,四邊形ABCD是“等對角四邊形”, ,則∠C= ;
(2)已知:在“等對角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4 , AD=3.求對角線AC的長;
(3)已知:如圖,在平面直角坐標系xoy中,四邊形ABCD是“等對角四邊形”,其中,點D在y軸上,拋物線過點A、C,點P在拋物線上,當滿足的P點至少有3個時,總有不等式成立,求n 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x與反比例函數(shù)y=(x>0)的圖象交于點A(4,n),AB⊥x軸,垂足為B.
(1)求k的值;
(2)點C在AB上,若OC=AC,求AC的長;
(3)點D為x軸正半軸上一點,在(2)的條件下,若S△OCD=S△ACD,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0).
(1)畫出△ABC關于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2,并寫出點C2的坐標;
(3)△A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com