【題目】某公司開(kāi)發(fā)生產(chǎn)960件新產(chǎn)品,需要加工后才能投放市場(chǎng),現(xiàn)甲、乙兩個(gè)工廠都想加工這批產(chǎn)品,已知甲工廠單獨(dú)完成這批產(chǎn)品比乙工廠單獨(dú)完成這批產(chǎn)品多用20天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.5倍,公司需付甲工廠加工費(fèi)每天80元,乙工廠每天加工費(fèi)用120元。

1)求甲、乙兩個(gè)工廠每天各能加工多少個(gè)新產(chǎn)品?

2)公司制定產(chǎn)品加工方案如下:可以由每個(gè)廠家單獨(dú)完成,也可以由兩個(gè)廠家同時(shí)合作完成。在加工過(guò)程中,公司派一名工程師每天來(lái)廠進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天5元的午餐補(bǔ)助費(fèi),請(qǐng)你幫助公司選擇一種既省時(shí)又省力的方案,并說(shuō)明理由。

【答案】1)甲工廠每天能加工16件,乙工廠每天能加工24件;(2)選擇甲、乙兩家工廠合作完成這批產(chǎn)品比較合適,理由見(jiàn)解析.

【解析】

1)設(shè)甲工廠每天能加工x件產(chǎn)品,則乙工廠每天能加工1.5x件產(chǎn)品,根據(jù)工作總量除以工作效率等于工作時(shí)間,分別表示出甲乙兩個(gè)工廠單獨(dú)完成需要的天數(shù),再根據(jù)甲比乙多用20天建立方程求解;

2)分別計(jì)算甲乙單獨(dú)完成需要的天數(shù)和費(fèi)用,以及甲乙合作完成需要的天數(shù)和費(fèi)用,比較三種方案即可得出答案.

(1)設(shè)甲工廠每天能加工x件產(chǎn)品,則乙工廠每天能加工1.5x件產(chǎn)品,

依題意得:

解得:.

經(jīng)檢驗(yàn),是原方程解,也符合題意.

答:甲工廠每天能加工16件,乙工廠每天能加工24件;

(2)甲工廠單獨(dú)完成需960÷16=60(),所需費(fèi)用為80×60+5×60=5100()

乙工廠單獨(dú)完成需960÷24=40(),所需費(fèi)用為120×40+5×40=5000()

設(shè)兩個(gè)工廠合作完成需(),所需費(fèi)用為(80+120)×24+5×24=4920().

答:通過(guò)比較,選擇甲、乙兩家工廠合作完成這批產(chǎn)品比較合適.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是矩形ABCD的一條對(duì)角線.

(1)BD的垂直平分線EF,分別交AD,BC于點(diǎn)EF,垂足為點(diǎn)O(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法)

(2)(1)中,連接BEDF,求證:四邊形DEBF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1所示,已知線段AB20cm,在AB上取一點(diǎn)PMAB的中點(diǎn),NAP中點(diǎn),若MN3cm,求線段AP的長(zhǎng);

(2)如圖2所示,∠AOB=∠COD90°,OC平分∠AOB,BOD3DOE.則∠COE是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC中,D是邊BC上的一點(diǎn),且BDDC=35,把ABC折疊,使點(diǎn)A落在邊BC上的點(diǎn)D處,若AM=5,那么AN的長(zhǎng)度為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知梯形ABCD,ADBC,ABBCAD=1,AB=3BC=4.若P為線段AB上任意一點(diǎn),延長(zhǎng)PDE,使DE=2PD,再以PE、PC為邊作平行四邊形PCQE,求對(duì)角線PQ的最小值為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒,底面為矩形EFGH,如圖2.設(shè)小正方形的邊長(zhǎng)為x厘米.

(1)當(dāng)矩形紙板ABCD的一邊長(zhǎng)為90厘米時(shí),求紙盒的側(cè)面積的最大值;

(2)當(dāng)EHEF=7:2,且側(cè)面積與底面積之比為9:7時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)教育局為了解今年九年級(jí)學(xué)生體育測(cè)試情況,隨機(jī)抽查了某班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,?/span>A、BC、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:

說(shuō)明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下

1)樣本中D級(jí)的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是

2)扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù)是 ;

3)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)若該校九年級(jí)有500名學(xué)生,請(qǐng)你用此樣本估計(jì)體育測(cè)試中A級(jí)和B級(jí)的學(xué)生人數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)反比例函數(shù)后,為研究新函數(shù),先將函數(shù)變形為,畫(huà)圖發(fā)現(xiàn)函數(shù)的圖象可以由函數(shù)的圖象向上平移1個(gè)單位得到.

1)根據(jù)小明的發(fā)現(xiàn),請(qǐng)你寫(xiě)出函數(shù)的圖象可以由反比例函數(shù)的圖象經(jīng)過(guò)怎樣的平移得到;

2)在平面直角坐標(biāo)系中,已知反比例函數(shù)(x0)的圖象如圖所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫(huà)出函數(shù)(x0)的圖象;

3)若直線y=xb與函數(shù)(x0)的圖象沒(méi)有交點(diǎn),b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AB∥CD,點(diǎn)H在CD上,點(diǎn)E、F在AB上,點(diǎn)G在AB、CD之間,連接FG、GH、HE,HG⊥HE,垂足為H,F(xiàn)G⊥HG,垂足為G.

(1)求證:∠EHC+∠GFE=180°.

(2)如圖2,HM平分∠CHG,交AB于點(diǎn)M,GK平分∠FGH,交HM于點(diǎn)K,求證:∠GHD=2∠EHM.

(3)如圖3,EP平分∠FEH,交HM于點(diǎn)N,交GK于點(diǎn)P,若∠BFG=50°,求∠NPK的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案